| Abhay Kumar | a61c522 | 2025-11-10 07:32:50 +0000 | [diff] [blame^] | 1 | // Copyright 2017, The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | // Package cmpopts provides common options for the cmp package. |
| 6 | package cmpopts |
| 7 | |
| 8 | import ( |
| 9 | "errors" |
| 10 | "fmt" |
| 11 | "math" |
| 12 | "reflect" |
| 13 | "time" |
| 14 | |
| 15 | "github.com/google/go-cmp/cmp" |
| 16 | ) |
| 17 | |
| 18 | func equateAlways(_, _ interface{}) bool { return true } |
| 19 | |
| 20 | // EquateEmpty returns a [cmp.Comparer] option that determines all maps and slices |
| 21 | // with a length of zero to be equal, regardless of whether they are nil. |
| 22 | // |
| 23 | // EquateEmpty can be used in conjunction with [SortSlices] and [SortMaps]. |
| 24 | func EquateEmpty() cmp.Option { |
| 25 | return cmp.FilterValues(isEmpty, cmp.Comparer(equateAlways)) |
| 26 | } |
| 27 | |
| 28 | func isEmpty(x, y interface{}) bool { |
| 29 | vx, vy := reflect.ValueOf(x), reflect.ValueOf(y) |
| 30 | return (x != nil && y != nil && vx.Type() == vy.Type()) && |
| 31 | (vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) && |
| 32 | (vx.Len() == 0 && vy.Len() == 0) |
| 33 | } |
| 34 | |
| 35 | // EquateApprox returns a [cmp.Comparer] option that determines float32 or float64 |
| 36 | // values to be equal if they are within a relative fraction or absolute margin. |
| 37 | // This option is not used when either x or y is NaN or infinite. |
| 38 | // |
| 39 | // The fraction determines that the difference of two values must be within the |
| 40 | // smaller fraction of the two values, while the margin determines that the two |
| 41 | // values must be within some absolute margin. |
| 42 | // To express only a fraction or only a margin, use 0 for the other parameter. |
| 43 | // The fraction and margin must be non-negative. |
| 44 | // |
| 45 | // The mathematical expression used is equivalent to: |
| 46 | // |
| 47 | // |x-y| ≤ max(fraction*min(|x|, |y|), margin) |
| 48 | // |
| 49 | // EquateApprox can be used in conjunction with [EquateNaNs]. |
| 50 | func EquateApprox(fraction, margin float64) cmp.Option { |
| 51 | if margin < 0 || fraction < 0 || math.IsNaN(margin) || math.IsNaN(fraction) { |
| 52 | panic("margin or fraction must be a non-negative number") |
| 53 | } |
| 54 | a := approximator{fraction, margin} |
| 55 | return cmp.Options{ |
| 56 | cmp.FilterValues(areRealF64s, cmp.Comparer(a.compareF64)), |
| 57 | cmp.FilterValues(areRealF32s, cmp.Comparer(a.compareF32)), |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | type approximator struct{ frac, marg float64 } |
| 62 | |
| 63 | func areRealF64s(x, y float64) bool { |
| 64 | return !math.IsNaN(x) && !math.IsNaN(y) && !math.IsInf(x, 0) && !math.IsInf(y, 0) |
| 65 | } |
| 66 | func areRealF32s(x, y float32) bool { |
| 67 | return areRealF64s(float64(x), float64(y)) |
| 68 | } |
| 69 | func (a approximator) compareF64(x, y float64) bool { |
| 70 | relMarg := a.frac * math.Min(math.Abs(x), math.Abs(y)) |
| 71 | return math.Abs(x-y) <= math.Max(a.marg, relMarg) |
| 72 | } |
| 73 | func (a approximator) compareF32(x, y float32) bool { |
| 74 | return a.compareF64(float64(x), float64(y)) |
| 75 | } |
| 76 | |
| 77 | // EquateNaNs returns a [cmp.Comparer] option that determines float32 and float64 |
| 78 | // NaN values to be equal. |
| 79 | // |
| 80 | // EquateNaNs can be used in conjunction with [EquateApprox]. |
| 81 | func EquateNaNs() cmp.Option { |
| 82 | return cmp.Options{ |
| 83 | cmp.FilterValues(areNaNsF64s, cmp.Comparer(equateAlways)), |
| 84 | cmp.FilterValues(areNaNsF32s, cmp.Comparer(equateAlways)), |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | func areNaNsF64s(x, y float64) bool { |
| 89 | return math.IsNaN(x) && math.IsNaN(y) |
| 90 | } |
| 91 | func areNaNsF32s(x, y float32) bool { |
| 92 | return areNaNsF64s(float64(x), float64(y)) |
| 93 | } |
| 94 | |
| 95 | // EquateApproxTime returns a [cmp.Comparer] option that determines two non-zero |
| 96 | // [time.Time] values to be equal if they are within some margin of one another. |
| 97 | // If both times have a monotonic clock reading, then the monotonic time |
| 98 | // difference will be used. The margin must be non-negative. |
| 99 | func EquateApproxTime(margin time.Duration) cmp.Option { |
| 100 | if margin < 0 { |
| 101 | panic("margin must be a non-negative number") |
| 102 | } |
| 103 | a := timeApproximator{margin} |
| 104 | return cmp.FilterValues(areNonZeroTimes, cmp.Comparer(a.compare)) |
| 105 | } |
| 106 | |
| 107 | func areNonZeroTimes(x, y time.Time) bool { |
| 108 | return !x.IsZero() && !y.IsZero() |
| 109 | } |
| 110 | |
| 111 | type timeApproximator struct { |
| 112 | margin time.Duration |
| 113 | } |
| 114 | |
| 115 | func (a timeApproximator) compare(x, y time.Time) bool { |
| 116 | // Avoid subtracting times to avoid overflow when the |
| 117 | // difference is larger than the largest representable duration. |
| 118 | if x.After(y) { |
| 119 | // Ensure x is always before y |
| 120 | x, y = y, x |
| 121 | } |
| 122 | // We're within the margin if x+margin >= y. |
| 123 | // Note: time.Time doesn't have AfterOrEqual method hence the negation. |
| 124 | return !x.Add(a.margin).Before(y) |
| 125 | } |
| 126 | |
| 127 | // AnyError is an error that matches any non-nil error. |
| 128 | var AnyError anyError |
| 129 | |
| 130 | type anyError struct{} |
| 131 | |
| 132 | func (anyError) Error() string { return "any error" } |
| 133 | func (anyError) Is(err error) bool { return err != nil } |
| 134 | |
| 135 | // EquateErrors returns a [cmp.Comparer] option that determines errors to be equal |
| 136 | // if [errors.Is] reports them to match. The [AnyError] error can be used to |
| 137 | // match any non-nil error. |
| 138 | func EquateErrors() cmp.Option { |
| 139 | return cmp.FilterValues(areConcreteErrors, cmp.Comparer(compareErrors)) |
| 140 | } |
| 141 | |
| 142 | // areConcreteErrors reports whether x and y are types that implement error. |
| 143 | // The input types are deliberately of the interface{} type rather than the |
| 144 | // error type so that we can handle situations where the current type is an |
| 145 | // interface{}, but the underlying concrete types both happen to implement |
| 146 | // the error interface. |
| 147 | func areConcreteErrors(x, y interface{}) bool { |
| 148 | _, ok1 := x.(error) |
| 149 | _, ok2 := y.(error) |
| 150 | return ok1 && ok2 |
| 151 | } |
| 152 | |
| 153 | func compareErrors(x, y interface{}) bool { |
| 154 | xe := x.(error) |
| 155 | ye := y.(error) |
| 156 | return errors.Is(xe, ye) || errors.Is(ye, xe) |
| 157 | } |
| 158 | |
| 159 | // EquateComparable returns a [cmp.Option] that determines equality |
| 160 | // of comparable types by directly comparing them using the == operator in Go. |
| 161 | // The types to compare are specified by passing a value of that type. |
| 162 | // This option should only be used on types that are documented as being |
| 163 | // safe for direct == comparison. For example, [net/netip.Addr] is documented |
| 164 | // as being semantically safe to use with ==, while [time.Time] is documented |
| 165 | // to discourage the use of == on time values. |
| 166 | func EquateComparable(typs ...interface{}) cmp.Option { |
| 167 | types := make(typesFilter) |
| 168 | for _, typ := range typs { |
| 169 | switch t := reflect.TypeOf(typ); { |
| 170 | case !t.Comparable(): |
| 171 | panic(fmt.Sprintf("%T is not a comparable Go type", typ)) |
| 172 | case types[t]: |
| 173 | panic(fmt.Sprintf("%T is already specified", typ)) |
| 174 | default: |
| 175 | types[t] = true |
| 176 | } |
| 177 | } |
| 178 | return cmp.FilterPath(types.filter, cmp.Comparer(equateAny)) |
| 179 | } |
| 180 | |
| 181 | type typesFilter map[reflect.Type]bool |
| 182 | |
| 183 | func (tf typesFilter) filter(p cmp.Path) bool { return tf[p.Last().Type()] } |
| 184 | |
| 185 | func equateAny(x, y interface{}) bool { return x == y } |