| Abhay Kumar | a2ae599 | 2025-11-10 14:02:24 +0000 | [diff] [blame^] | 1 | // Copyright 2015 The etcd Authors |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | package raft |
| 16 | |
| 17 | import ( |
| 18 | "errors" |
| 19 | |
| 20 | pb "go.etcd.io/raft/v3/raftpb" |
| 21 | "go.etcd.io/raft/v3/tracker" |
| 22 | ) |
| 23 | |
| 24 | // ErrStepLocalMsg is returned when try to step a local raft message |
| 25 | var ErrStepLocalMsg = errors.New("raft: cannot step raft local message") |
| 26 | |
| 27 | // ErrStepPeerNotFound is returned when try to step a response message |
| 28 | // but there is no peer found in raft.trk for that node. |
| 29 | var ErrStepPeerNotFound = errors.New("raft: cannot step as peer not found") |
| 30 | |
| 31 | // RawNode is a thread-unsafe Node. |
| 32 | // The methods of this struct correspond to the methods of Node and are described |
| 33 | // more fully there. |
| 34 | type RawNode struct { |
| 35 | raft *raft |
| 36 | asyncStorageWrites bool |
| 37 | |
| 38 | // Mutable fields. |
| 39 | prevSoftSt *SoftState |
| 40 | prevHardSt pb.HardState |
| 41 | stepsOnAdvance []pb.Message |
| 42 | } |
| 43 | |
| 44 | // NewRawNode instantiates a RawNode from the given configuration. |
| 45 | // |
| 46 | // See Bootstrap() for bootstrapping an initial state; this replaces the former |
| 47 | // 'peers' argument to this method (with identical behavior). However, It is |
| 48 | // recommended that instead of calling Bootstrap, applications bootstrap their |
| 49 | // state manually by setting up a Storage that has a first index > 1 and which |
| 50 | // stores the desired ConfState as its InitialState. |
| 51 | func NewRawNode(config *Config) (*RawNode, error) { |
| 52 | r := newRaft(config) |
| 53 | rn := &RawNode{ |
| 54 | raft: r, |
| 55 | } |
| 56 | rn.asyncStorageWrites = config.AsyncStorageWrites |
| 57 | ss := r.softState() |
| 58 | rn.prevSoftSt = &ss |
| 59 | rn.prevHardSt = r.hardState() |
| 60 | return rn, nil |
| 61 | } |
| 62 | |
| 63 | // Tick advances the internal logical clock by a single tick. |
| 64 | func (rn *RawNode) Tick() { |
| 65 | rn.raft.tick() |
| 66 | } |
| 67 | |
| 68 | // TickQuiesced advances the internal logical clock by a single tick without |
| 69 | // performing any other state machine processing. It allows the caller to avoid |
| 70 | // periodic heartbeats and elections when all of the peers in a Raft group are |
| 71 | // known to be at the same state. Expected usage is to periodically invoke Tick |
| 72 | // or TickQuiesced depending on whether the group is "active" or "quiesced". |
| 73 | // |
| 74 | // WARNING: Be very careful about using this method as it subverts the Raft |
| 75 | // state machine. You should probably be using Tick instead. |
| 76 | // |
| 77 | // DEPRECATED: This method will be removed in a future release. |
| 78 | func (rn *RawNode) TickQuiesced() { |
| 79 | rn.raft.electionElapsed++ |
| 80 | } |
| 81 | |
| 82 | // Campaign causes this RawNode to transition to candidate state. |
| 83 | func (rn *RawNode) Campaign() error { |
| 84 | return rn.raft.Step(pb.Message{ |
| 85 | Type: pb.MsgHup, |
| 86 | }) |
| 87 | } |
| 88 | |
| 89 | // Propose proposes data be appended to the raft log. |
| 90 | func (rn *RawNode) Propose(data []byte) error { |
| 91 | return rn.raft.Step(pb.Message{ |
| 92 | Type: pb.MsgProp, |
| 93 | From: rn.raft.id, |
| 94 | Entries: []pb.Entry{ |
| 95 | {Data: data}, |
| 96 | }}) |
| 97 | } |
| 98 | |
| 99 | // ProposeConfChange proposes a config change. See (Node).ProposeConfChange for |
| 100 | // details. |
| 101 | func (rn *RawNode) ProposeConfChange(cc pb.ConfChangeI) error { |
| 102 | m, err := confChangeToMsg(cc) |
| 103 | if err != nil { |
| 104 | return err |
| 105 | } |
| 106 | return rn.raft.Step(m) |
| 107 | } |
| 108 | |
| 109 | // ApplyConfChange applies a config change to the local node. The app must call |
| 110 | // this when it applies a configuration change, except when it decides to reject |
| 111 | // the configuration change, in which case no call must take place. |
| 112 | func (rn *RawNode) ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState { |
| 113 | cs := rn.raft.applyConfChange(cc.AsV2()) |
| 114 | return &cs |
| 115 | } |
| 116 | |
| 117 | // Step advances the state machine using the given message. |
| 118 | func (rn *RawNode) Step(m pb.Message) error { |
| 119 | // Ignore unexpected local messages receiving over network. |
| 120 | if IsLocalMsg(m.Type) && !IsLocalMsgTarget(m.From) { |
| 121 | return ErrStepLocalMsg |
| 122 | } |
| 123 | if IsResponseMsg(m.Type) && !IsLocalMsgTarget(m.From) && rn.raft.trk.Progress[m.From] == nil { |
| 124 | return ErrStepPeerNotFound |
| 125 | } |
| 126 | return rn.raft.Step(m) |
| 127 | } |
| 128 | |
| 129 | // Ready returns the outstanding work that the application needs to handle. This |
| 130 | // includes appending and applying entries or a snapshot, updating the HardState, |
| 131 | // and sending messages. The returned Ready() *must* be handled and subsequently |
| 132 | // passed back via Advance(). |
| 133 | func (rn *RawNode) Ready() Ready { |
| 134 | rd := rn.readyWithoutAccept() |
| 135 | rn.acceptReady(rd) |
| 136 | return rd |
| 137 | } |
| 138 | |
| 139 | // readyWithoutAccept returns a Ready. This is a read-only operation, i.e. there |
| 140 | // is no obligation that the Ready must be handled. |
| 141 | func (rn *RawNode) readyWithoutAccept() Ready { |
| 142 | r := rn.raft |
| 143 | |
| 144 | rd := Ready{ |
| 145 | Entries: r.raftLog.nextUnstableEnts(), |
| 146 | CommittedEntries: r.raftLog.nextCommittedEnts(rn.applyUnstableEntries()), |
| 147 | Messages: r.msgs, |
| 148 | } |
| 149 | if softSt := r.softState(); !softSt.equal(rn.prevSoftSt) { |
| 150 | // Allocate only when SoftState changes. |
| 151 | escapingSoftSt := softSt |
| 152 | rd.SoftState = &escapingSoftSt |
| 153 | } |
| 154 | if hardSt := r.hardState(); !isHardStateEqual(hardSt, rn.prevHardSt) { |
| 155 | rd.HardState = hardSt |
| 156 | } |
| 157 | if r.raftLog.hasNextUnstableSnapshot() { |
| 158 | rd.Snapshot = *r.raftLog.nextUnstableSnapshot() |
| 159 | } |
| 160 | if len(r.readStates) != 0 { |
| 161 | rd.ReadStates = r.readStates |
| 162 | } |
| 163 | rd.MustSync = MustSync(r.hardState(), rn.prevHardSt, len(rd.Entries)) |
| 164 | |
| 165 | if rn.asyncStorageWrites { |
| 166 | // If async storage writes are enabled, enqueue messages to |
| 167 | // local storage threads, where applicable. |
| 168 | if needStorageAppendMsg(r, rd) { |
| 169 | m := newStorageAppendMsg(r, rd) |
| 170 | rd.Messages = append(rd.Messages, m) |
| 171 | } |
| 172 | if needStorageApplyMsg(rd) { |
| 173 | m := newStorageApplyMsg(r, rd) |
| 174 | rd.Messages = append(rd.Messages, m) |
| 175 | } |
| 176 | } else { |
| 177 | // If async storage writes are disabled, immediately enqueue |
| 178 | // msgsAfterAppend to be sent out. The Ready struct contract |
| 179 | // mandates that Messages cannot be sent until after Entries |
| 180 | // are written to stable storage. |
| 181 | for _, m := range r.msgsAfterAppend { |
| 182 | if m.To != r.id { |
| 183 | rd.Messages = append(rd.Messages, m) |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | return rd |
| 189 | } |
| 190 | |
| 191 | // MustSync returns true if the hard state and count of Raft entries indicate |
| 192 | // that a synchronous write to persistent storage is required. |
| 193 | func MustSync(st, prevst pb.HardState, entsnum int) bool { |
| 194 | // Persistent state on all servers: |
| 195 | // (Updated on stable storage before responding to RPCs) |
| 196 | // currentTerm |
| 197 | // votedFor |
| 198 | // log entries[] |
| 199 | return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term |
| 200 | } |
| 201 | |
| 202 | func needStorageAppendMsg(r *raft, rd Ready) bool { |
| 203 | // Return true if log entries, hard state, or a snapshot need to be written |
| 204 | // to stable storage. Also return true if any messages are contingent on all |
| 205 | // prior MsgStorageAppend being processed. |
| 206 | return len(rd.Entries) > 0 || |
| 207 | !IsEmptyHardState(rd.HardState) || |
| 208 | !IsEmptySnap(rd.Snapshot) || |
| 209 | len(r.msgsAfterAppend) > 0 |
| 210 | } |
| 211 | |
| 212 | func needStorageAppendRespMsg(r *raft, rd Ready) bool { |
| 213 | // Return true if raft needs to hear about stabilized entries or an applied |
| 214 | // snapshot. See the comment in newStorageAppendRespMsg, which explains why |
| 215 | // we check hasNextOrInProgressUnstableEnts instead of len(rd.Entries) > 0. |
| 216 | return r.raftLog.hasNextOrInProgressUnstableEnts() || |
| 217 | !IsEmptySnap(rd.Snapshot) |
| 218 | } |
| 219 | |
| 220 | // newStorageAppendMsg creates the message that should be sent to the local |
| 221 | // append thread to instruct it to append log entries, write an updated hard |
| 222 | // state, and apply a snapshot. The message also carries a set of responses |
| 223 | // that should be delivered after the rest of the message is processed. Used |
| 224 | // with AsyncStorageWrites. |
| 225 | func newStorageAppendMsg(r *raft, rd Ready) pb.Message { |
| 226 | m := pb.Message{ |
| 227 | Type: pb.MsgStorageAppend, |
| 228 | To: LocalAppendThread, |
| 229 | From: r.id, |
| 230 | Entries: rd.Entries, |
| 231 | } |
| 232 | if !IsEmptyHardState(rd.HardState) { |
| 233 | // If the Ready includes a HardState update, assign each of its fields |
| 234 | // to the corresponding fields in the Message. This allows clients to |
| 235 | // reconstruct the HardState and save it to stable storage. |
| 236 | // |
| 237 | // If the Ready does not include a HardState update, make sure to not |
| 238 | // assign a value to any of the fields so that a HardState reconstructed |
| 239 | // from them will be empty (return true from raft.IsEmptyHardState). |
| 240 | m.Term = rd.Term |
| 241 | m.Vote = rd.Vote |
| 242 | m.Commit = rd.Commit |
| 243 | } |
| 244 | if !IsEmptySnap(rd.Snapshot) { |
| 245 | snap := rd.Snapshot |
| 246 | m.Snapshot = &snap |
| 247 | } |
| 248 | // Attach all messages in msgsAfterAppend as responses to be delivered after |
| 249 | // the message is processed, along with a self-directed MsgStorageAppendResp |
| 250 | // to acknowledge the entry stability. |
| 251 | // |
| 252 | // NB: it is important for performance that MsgStorageAppendResp message be |
| 253 | // handled after self-directed MsgAppResp messages on the leader (which will |
| 254 | // be contained in msgsAfterAppend). This ordering allows the MsgAppResp |
| 255 | // handling to use a fast-path in r.raftLog.term() before the newly appended |
| 256 | // entries are removed from the unstable log. |
| 257 | m.Responses = r.msgsAfterAppend |
| 258 | if needStorageAppendRespMsg(r, rd) { |
| 259 | m.Responses = append(m.Responses, newStorageAppendRespMsg(r, rd)) |
| 260 | } |
| 261 | return m |
| 262 | } |
| 263 | |
| 264 | // newStorageAppendRespMsg creates the message that should be returned to node |
| 265 | // after the unstable log entries, hard state, and snapshot in the current Ready |
| 266 | // (along with those in all prior Ready structs) have been saved to stable |
| 267 | // storage. |
| 268 | func newStorageAppendRespMsg(r *raft, rd Ready) pb.Message { |
| 269 | m := pb.Message{ |
| 270 | Type: pb.MsgStorageAppendResp, |
| 271 | To: r.id, |
| 272 | From: LocalAppendThread, |
| 273 | // Dropped after term change, see below. |
| 274 | Term: r.Term, |
| 275 | } |
| 276 | if r.raftLog.hasNextOrInProgressUnstableEnts() { |
| 277 | // If the raft log has unstable entries, attach the last index and term of the |
| 278 | // append to the response message. This (index, term) tuple will be handed back |
| 279 | // and consulted when the stability of those log entries is signaled to the |
| 280 | // unstable. If the (index, term) match the unstable log by the time the |
| 281 | // response is received (unstable.stableTo), the unstable log can be truncated. |
| 282 | // |
| 283 | // However, with just this logic, there would be an ABA problem[^1] that could |
| 284 | // lead to the unstable log and the stable log getting out of sync temporarily |
| 285 | // and leading to an inconsistent view. Consider the following example with 5 |
| 286 | // nodes, A B C D E: |
| 287 | // |
| 288 | // 1. A is the leader. |
| 289 | // 2. A proposes some log entries but only B receives these entries. |
| 290 | // 3. B gets the Ready and the entries are appended asynchronously. |
| 291 | // 4. A crashes and C becomes leader after getting a vote from D and E. |
| 292 | // 5. C proposes some log entries and B receives these entries, overwriting the |
| 293 | // previous unstable log entries that are in the process of being appended. |
| 294 | // The entries have a larger term than the previous entries but the same |
| 295 | // indexes. It begins appending these new entries asynchronously. |
| 296 | // 6. C crashes and A restarts and becomes leader again after getting the vote |
| 297 | // from D and E. |
| 298 | // 7. B receives the entries from A which are the same as the ones from step 2, |
| 299 | // overwriting the previous unstable log entries that are in the process of |
| 300 | // being appended from step 5. The entries have the original terms and |
| 301 | // indexes from step 2. Recall that log entries retain their original term |
| 302 | // numbers when a leader replicates entries from previous terms. It begins |
| 303 | // appending these new entries asynchronously. |
| 304 | // 8. The asynchronous log appends from the first Ready complete and stableTo |
| 305 | // is called. |
| 306 | // 9. However, the log entries from the second Ready are still in the |
| 307 | // asynchronous append pipeline and will overwrite (in stable storage) the |
| 308 | // entries from the first Ready at some future point. We can't truncate the |
| 309 | // unstable log yet or a future read from Storage might see the entries from |
| 310 | // step 5 before they have been replaced by the entries from step 7. |
| 311 | // Instead, we must wait until we are sure that the entries are stable and |
| 312 | // that no in-progress appends might overwrite them before removing entries |
| 313 | // from the unstable log. |
| 314 | // |
| 315 | // To prevent these kinds of problems, we also attach the current term to the |
| 316 | // MsgStorageAppendResp (above). If the term has changed by the time the |
| 317 | // MsgStorageAppendResp if returned, the response is ignored and the unstable |
| 318 | // log is not truncated. The unstable log is only truncated when the term has |
| 319 | // remained unchanged from the time that the MsgStorageAppend was sent to the |
| 320 | // time that the MsgStorageAppendResp is received, indicating that no-one else |
| 321 | // is in the process of truncating the stable log. |
| 322 | // |
| 323 | // However, this replaces a correctness problem with a liveness problem. If we |
| 324 | // only attempted to truncate the unstable log when appending new entries but |
| 325 | // also occasionally dropped these responses, then quiescence of new log entries |
| 326 | // could lead to the unstable log never being truncated. |
| 327 | // |
| 328 | // To combat this, we attempt to truncate the log on all MsgStorageAppendResp |
| 329 | // messages where the unstable log is not empty, not just those associated with |
| 330 | // entry appends. This includes MsgStorageAppendResp messages associated with an |
| 331 | // updated HardState, which occur after a term change. |
| 332 | // |
| 333 | // In other words, we set Index and LogTerm in a block that looks like: |
| 334 | // |
| 335 | // if r.raftLog.hasNextOrInProgressUnstableEnts() { ... } |
| 336 | // |
| 337 | // not like: |
| 338 | // |
| 339 | // if len(rd.Entries) > 0 { ... } |
| 340 | // |
| 341 | // To do so, we attach r.raftLog.lastIndex() and r.raftLog.lastTerm(), not the |
| 342 | // (index, term) of the last entry in rd.Entries. If rd.Entries is not empty, |
| 343 | // these will be the same. However, if rd.Entries is empty, we still want to |
| 344 | // attest that this (index, term) is correct at the current term, in case the |
| 345 | // MsgStorageAppend that contained the last entry in the unstable slice carried |
| 346 | // an earlier term and was dropped. |
| 347 | // |
| 348 | // A MsgStorageAppend with a new term is emitted on each term change. This is |
| 349 | // the same condition that causes MsgStorageAppendResp messages with earlier |
| 350 | // terms to be ignored. As a result, we are guaranteed that, assuming a bounded |
| 351 | // number of term changes, there will eventually be a MsgStorageAppendResp |
| 352 | // message that is not ignored. This means that entries in the unstable log |
| 353 | // which have been appended to stable storage will eventually be truncated and |
| 354 | // dropped from memory. |
| 355 | // |
| 356 | // [^1]: https://en.wikipedia.org/wiki/ABA_problem |
| 357 | last := r.raftLog.lastEntryID() |
| 358 | m.Index = last.index |
| 359 | m.LogTerm = last.term |
| 360 | } |
| 361 | if !IsEmptySnap(rd.Snapshot) { |
| 362 | snap := rd.Snapshot |
| 363 | m.Snapshot = &snap |
| 364 | } |
| 365 | return m |
| 366 | } |
| 367 | |
| 368 | func needStorageApplyMsg(rd Ready) bool { return len(rd.CommittedEntries) > 0 } |
| 369 | func needStorageApplyRespMsg(rd Ready) bool { return needStorageApplyMsg(rd) } |
| 370 | |
| 371 | // newStorageApplyMsg creates the message that should be sent to the local |
| 372 | // apply thread to instruct it to apply committed log entries. The message |
| 373 | // also carries a response that should be delivered after the rest of the |
| 374 | // message is processed. Used with AsyncStorageWrites. |
| 375 | func newStorageApplyMsg(r *raft, rd Ready) pb.Message { |
| 376 | ents := rd.CommittedEntries |
| 377 | return pb.Message{ |
| 378 | Type: pb.MsgStorageApply, |
| 379 | To: LocalApplyThread, |
| 380 | From: r.id, |
| 381 | Term: 0, // committed entries don't apply under a specific term |
| 382 | Entries: ents, |
| 383 | Responses: []pb.Message{ |
| 384 | newStorageApplyRespMsg(r, ents), |
| 385 | }, |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | // newStorageApplyRespMsg creates the message that should be returned to node |
| 390 | // after the committed entries in the current Ready (along with those in all |
| 391 | // prior Ready structs) have been applied to the local state machine. |
| 392 | func newStorageApplyRespMsg(r *raft, ents []pb.Entry) pb.Message { |
| 393 | return pb.Message{ |
| 394 | Type: pb.MsgStorageApplyResp, |
| 395 | To: r.id, |
| 396 | From: LocalApplyThread, |
| 397 | Term: 0, // committed entries don't apply under a specific term |
| 398 | Entries: ents, |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | // acceptReady is called when the consumer of the RawNode has decided to go |
| 403 | // ahead and handle a Ready. Nothing must alter the state of the RawNode between |
| 404 | // this call and the prior call to Ready(). |
| 405 | func (rn *RawNode) acceptReady(rd Ready) { |
| 406 | if rd.SoftState != nil { |
| 407 | rn.prevSoftSt = rd.SoftState |
| 408 | } |
| 409 | if !IsEmptyHardState(rd.HardState) { |
| 410 | rn.prevHardSt = rd.HardState |
| 411 | } |
| 412 | if len(rd.ReadStates) != 0 { |
| 413 | rn.raft.readStates = nil |
| 414 | } |
| 415 | if !rn.asyncStorageWrites { |
| 416 | if len(rn.stepsOnAdvance) != 0 { |
| 417 | rn.raft.logger.Panicf("two accepted Ready structs without call to Advance") |
| 418 | } |
| 419 | for _, m := range rn.raft.msgsAfterAppend { |
| 420 | if m.To == rn.raft.id { |
| 421 | rn.stepsOnAdvance = append(rn.stepsOnAdvance, m) |
| 422 | } |
| 423 | } |
| 424 | if needStorageAppendRespMsg(rn.raft, rd) { |
| 425 | m := newStorageAppendRespMsg(rn.raft, rd) |
| 426 | rn.stepsOnAdvance = append(rn.stepsOnAdvance, m) |
| 427 | } |
| 428 | if needStorageApplyRespMsg(rd) { |
| 429 | m := newStorageApplyRespMsg(rn.raft, rd.CommittedEntries) |
| 430 | rn.stepsOnAdvance = append(rn.stepsOnAdvance, m) |
| 431 | } |
| 432 | } |
| 433 | rn.raft.msgs = nil |
| 434 | rn.raft.msgsAfterAppend = nil |
| 435 | rn.raft.raftLog.acceptUnstable() |
| 436 | if len(rd.CommittedEntries) > 0 { |
| 437 | ents := rd.CommittedEntries |
| 438 | index := ents[len(ents)-1].Index |
| 439 | rn.raft.raftLog.acceptApplying(index, entsSize(ents), rn.applyUnstableEntries()) |
| 440 | } |
| 441 | |
| 442 | traceReady(rn.raft) |
| 443 | } |
| 444 | |
| 445 | // applyUnstableEntries returns whether entries are allowed to be applied once |
| 446 | // they are known to be committed but before they have been written locally to |
| 447 | // stable storage. |
| 448 | func (rn *RawNode) applyUnstableEntries() bool { |
| 449 | return !rn.asyncStorageWrites |
| 450 | } |
| 451 | |
| 452 | // HasReady called when RawNode user need to check if any Ready pending. |
| 453 | func (rn *RawNode) HasReady() bool { |
| 454 | // TODO(nvanbenschoten): order these cases in terms of cost and frequency. |
| 455 | r := rn.raft |
| 456 | if softSt := r.softState(); !softSt.equal(rn.prevSoftSt) { |
| 457 | return true |
| 458 | } |
| 459 | if hardSt := r.hardState(); !IsEmptyHardState(hardSt) && !isHardStateEqual(hardSt, rn.prevHardSt) { |
| 460 | return true |
| 461 | } |
| 462 | if r.raftLog.hasNextUnstableSnapshot() { |
| 463 | return true |
| 464 | } |
| 465 | if len(r.msgs) > 0 || len(r.msgsAfterAppend) > 0 { |
| 466 | return true |
| 467 | } |
| 468 | if r.raftLog.hasNextUnstableEnts() || r.raftLog.hasNextCommittedEnts(rn.applyUnstableEntries()) { |
| 469 | return true |
| 470 | } |
| 471 | if len(r.readStates) != 0 { |
| 472 | return true |
| 473 | } |
| 474 | return false |
| 475 | } |
| 476 | |
| 477 | // Advance notifies the RawNode that the application has applied and saved progress in the |
| 478 | // last Ready results. |
| 479 | // |
| 480 | // NOTE: Advance must not be called when using AsyncStorageWrites. Response messages from |
| 481 | // the local append and apply threads take its place. |
| 482 | func (rn *RawNode) Advance(_ Ready) { |
| 483 | // The actions performed by this function are encoded into stepsOnAdvance in |
| 484 | // acceptReady. In earlier versions of this library, they were computed from |
| 485 | // the provided Ready struct. Retain the unused parameter for compatibility. |
| 486 | if rn.asyncStorageWrites { |
| 487 | rn.raft.logger.Panicf("Advance must not be called when using AsyncStorageWrites") |
| 488 | } |
| 489 | for i, m := range rn.stepsOnAdvance { |
| 490 | _ = rn.raft.Step(m) |
| 491 | rn.stepsOnAdvance[i] = pb.Message{} |
| 492 | } |
| 493 | rn.stepsOnAdvance = rn.stepsOnAdvance[:0] |
| 494 | } |
| 495 | |
| 496 | // Status returns the current status of the given group. This allocates, see |
| 497 | // BasicStatus and WithProgress for allocation-friendlier choices. |
| 498 | func (rn *RawNode) Status() Status { |
| 499 | status := getStatus(rn.raft) |
| 500 | return status |
| 501 | } |
| 502 | |
| 503 | // BasicStatus returns a BasicStatus. Notably this does not contain the |
| 504 | // Progress map; see WithProgress for an allocation-free way to inspect it. |
| 505 | func (rn *RawNode) BasicStatus() BasicStatus { |
| 506 | return getBasicStatus(rn.raft) |
| 507 | } |
| 508 | |
| 509 | // ProgressType indicates the type of replica a Progress corresponds to. |
| 510 | type ProgressType byte |
| 511 | |
| 512 | const ( |
| 513 | // ProgressTypePeer accompanies a Progress for a regular peer replica. |
| 514 | ProgressTypePeer ProgressType = iota |
| 515 | // ProgressTypeLearner accompanies a Progress for a learner replica. |
| 516 | ProgressTypeLearner |
| 517 | ) |
| 518 | |
| 519 | // WithProgress is a helper to introspect the Progress for this node and its |
| 520 | // peers. |
| 521 | func (rn *RawNode) WithProgress(visitor func(id uint64, typ ProgressType, pr tracker.Progress)) { |
| 522 | rn.raft.trk.Visit(func(id uint64, pr *tracker.Progress) { |
| 523 | typ := ProgressTypePeer |
| 524 | if pr.IsLearner { |
| 525 | typ = ProgressTypeLearner |
| 526 | } |
| 527 | p := *pr |
| 528 | p.Inflights = nil |
| 529 | visitor(id, typ, p) |
| 530 | }) |
| 531 | } |
| 532 | |
| 533 | // ReportUnreachable reports the given node is not reachable for the last send. |
| 534 | func (rn *RawNode) ReportUnreachable(id uint64) { |
| 535 | _ = rn.raft.Step(pb.Message{Type: pb.MsgUnreachable, From: id}) |
| 536 | } |
| 537 | |
| 538 | // ReportSnapshot reports the status of the sent snapshot. |
| 539 | func (rn *RawNode) ReportSnapshot(id uint64, status SnapshotStatus) { |
| 540 | rej := status == SnapshotFailure |
| 541 | |
| 542 | _ = rn.raft.Step(pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}) |
| 543 | } |
| 544 | |
| 545 | // TransferLeader tries to transfer leadership to the given transferee. |
| 546 | func (rn *RawNode) TransferLeader(transferee uint64) { |
| 547 | _ = rn.raft.Step(pb.Message{Type: pb.MsgTransferLeader, From: transferee}) |
| 548 | } |
| 549 | |
| 550 | // ForgetLeader forgets a follower's current leader, changing it to None. |
| 551 | // See (Node).ForgetLeader for details. |
| 552 | func (rn *RawNode) ForgetLeader() error { |
| 553 | return rn.raft.Step(pb.Message{Type: pb.MsgForgetLeader}) |
| 554 | } |
| 555 | |
| 556 | // ReadIndex requests a read state. The read state will be set in ready. |
| 557 | // Read State has a read index. Once the application advances further than the read |
| 558 | // index, any linearizable read requests issued before the read request can be |
| 559 | // processed safely. The read state will have the same rctx attached. |
| 560 | func (rn *RawNode) ReadIndex(rctx []byte) { |
| 561 | _ = rn.raft.Step(pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}}) |
| 562 | } |