| Abhay Kumar | a2ae599 | 2025-11-10 14:02:24 +0000 | [diff] [blame^] | 1 | // Copyright 2009 The Go Authors. All rights reserved. |
| 2 | // Copyright (c) 2015 Klaus Post |
| 3 | // Use of this source code is governed by a BSD-style |
| 4 | // license that can be found in the LICENSE file. |
| 5 | |
| 6 | package flate |
| 7 | |
| 8 | import ( |
| 9 | "encoding/binary" |
| 10 | "errors" |
| 11 | "fmt" |
| 12 | "io" |
| 13 | "math" |
| 14 | ) |
| 15 | |
| 16 | const ( |
| 17 | NoCompression = 0 |
| 18 | BestSpeed = 1 |
| 19 | BestCompression = 9 |
| 20 | DefaultCompression = -1 |
| 21 | |
| 22 | // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman |
| 23 | // entropy encoding. This mode is useful in compressing data that has |
| 24 | // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) |
| 25 | // that lacks an entropy encoder. Compression gains are achieved when |
| 26 | // certain bytes in the input stream occur more frequently than others. |
| 27 | // |
| 28 | // Note that HuffmanOnly produces a compressed output that is |
| 29 | // RFC 1951 compliant. That is, any valid DEFLATE decompressor will |
| 30 | // continue to be able to decompress this output. |
| 31 | HuffmanOnly = -2 |
| 32 | ConstantCompression = HuffmanOnly // compatibility alias. |
| 33 | |
| 34 | logWindowSize = 15 |
| 35 | windowSize = 1 << logWindowSize |
| 36 | windowMask = windowSize - 1 |
| 37 | logMaxOffsetSize = 15 // Standard DEFLATE |
| 38 | minMatchLength = 4 // The smallest match that the compressor looks for |
| 39 | maxMatchLength = 258 // The longest match for the compressor |
| 40 | minOffsetSize = 1 // The shortest offset that makes any sense |
| 41 | |
| 42 | // The maximum number of tokens we will encode at the time. |
| 43 | // Smaller sizes usually creates less optimal blocks. |
| 44 | // Bigger can make context switching slow. |
| 45 | // We use this for levels 7-9, so we make it big. |
| 46 | maxFlateBlockTokens = 1 << 15 |
| 47 | maxStoreBlockSize = 65535 |
| 48 | hashBits = 17 // After 17 performance degrades |
| 49 | hashSize = 1 << hashBits |
| 50 | hashMask = (1 << hashBits) - 1 |
| 51 | hashShift = (hashBits + minMatchLength - 1) / minMatchLength |
| 52 | maxHashOffset = 1 << 28 |
| 53 | |
| 54 | skipNever = math.MaxInt32 |
| 55 | |
| 56 | debugDeflate = false |
| 57 | ) |
| 58 | |
| 59 | type compressionLevel struct { |
| 60 | good, lazy, nice, chain, fastSkipHashing, level int |
| 61 | } |
| 62 | |
| 63 | // Compression levels have been rebalanced from zlib deflate defaults |
| 64 | // to give a bigger spread in speed and compression. |
| 65 | // See https://blog.klauspost.com/rebalancing-deflate-compression-levels/ |
| 66 | var levels = []compressionLevel{ |
| 67 | {}, // 0 |
| 68 | // Level 1-6 uses specialized algorithm - values not used |
| 69 | {0, 0, 0, 0, 0, 1}, |
| 70 | {0, 0, 0, 0, 0, 2}, |
| 71 | {0, 0, 0, 0, 0, 3}, |
| 72 | {0, 0, 0, 0, 0, 4}, |
| 73 | {0, 0, 0, 0, 0, 5}, |
| 74 | {0, 0, 0, 0, 0, 6}, |
| 75 | // Levels 7-9 use increasingly more lazy matching |
| 76 | // and increasingly stringent conditions for "good enough". |
| 77 | {8, 12, 16, 24, skipNever, 7}, |
| 78 | {16, 30, 40, 64, skipNever, 8}, |
| 79 | {32, 258, 258, 1024, skipNever, 9}, |
| 80 | } |
| 81 | |
| 82 | // advancedState contains state for the advanced levels, with bigger hash tables, etc. |
| 83 | type advancedState struct { |
| 84 | // deflate state |
| 85 | length int |
| 86 | offset int |
| 87 | maxInsertIndex int |
| 88 | chainHead int |
| 89 | hashOffset int |
| 90 | |
| 91 | ii uint16 // position of last match, intended to overflow to reset. |
| 92 | |
| 93 | // input window: unprocessed data is window[index:windowEnd] |
| 94 | index int |
| 95 | hashMatch [maxMatchLength + minMatchLength]uint32 |
| 96 | |
| 97 | // Input hash chains |
| 98 | // hashHead[hashValue] contains the largest inputIndex with the specified hash value |
| 99 | // If hashHead[hashValue] is within the current window, then |
| 100 | // hashPrev[hashHead[hashValue] & windowMask] contains the previous index |
| 101 | // with the same hash value. |
| 102 | hashHead [hashSize]uint32 |
| 103 | hashPrev [windowSize]uint32 |
| 104 | } |
| 105 | |
| 106 | type compressor struct { |
| 107 | compressionLevel |
| 108 | |
| 109 | h *huffmanEncoder |
| 110 | w *huffmanBitWriter |
| 111 | |
| 112 | // compression algorithm |
| 113 | fill func(*compressor, []byte) int // copy data to window |
| 114 | step func(*compressor) // process window |
| 115 | |
| 116 | window []byte |
| 117 | windowEnd int |
| 118 | blockStart int // window index where current tokens start |
| 119 | err error |
| 120 | |
| 121 | // queued output tokens |
| 122 | tokens tokens |
| 123 | fast fastEnc |
| 124 | state *advancedState |
| 125 | |
| 126 | sync bool // requesting flush |
| 127 | byteAvailable bool // if true, still need to process window[index-1]. |
| 128 | } |
| 129 | |
| 130 | func (d *compressor) fillDeflate(b []byte) int { |
| 131 | s := d.state |
| 132 | if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) { |
| 133 | // shift the window by windowSize |
| 134 | //copy(d.window[:], d.window[windowSize:2*windowSize]) |
| 135 | *(*[windowSize]byte)(d.window) = *(*[windowSize]byte)(d.window[windowSize:]) |
| 136 | s.index -= windowSize |
| 137 | d.windowEnd -= windowSize |
| 138 | if d.blockStart >= windowSize { |
| 139 | d.blockStart -= windowSize |
| 140 | } else { |
| 141 | d.blockStart = math.MaxInt32 |
| 142 | } |
| 143 | s.hashOffset += windowSize |
| 144 | if s.hashOffset > maxHashOffset { |
| 145 | delta := s.hashOffset - 1 |
| 146 | s.hashOffset -= delta |
| 147 | s.chainHead -= delta |
| 148 | // Iterate over slices instead of arrays to avoid copying |
| 149 | // the entire table onto the stack (Issue #18625). |
| 150 | for i, v := range s.hashPrev[:] { |
| 151 | if int(v) > delta { |
| 152 | s.hashPrev[i] = uint32(int(v) - delta) |
| 153 | } else { |
| 154 | s.hashPrev[i] = 0 |
| 155 | } |
| 156 | } |
| 157 | for i, v := range s.hashHead[:] { |
| 158 | if int(v) > delta { |
| 159 | s.hashHead[i] = uint32(int(v) - delta) |
| 160 | } else { |
| 161 | s.hashHead[i] = 0 |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | n := copy(d.window[d.windowEnd:], b) |
| 167 | d.windowEnd += n |
| 168 | return n |
| 169 | } |
| 170 | |
| 171 | func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error { |
| 172 | if index > 0 || eof { |
| 173 | var window []byte |
| 174 | if d.blockStart <= index { |
| 175 | window = d.window[d.blockStart:index] |
| 176 | } |
| 177 | d.blockStart = index |
| 178 | //d.w.writeBlock(tok, eof, window) |
| 179 | d.w.writeBlockDynamic(tok, eof, window, d.sync) |
| 180 | return d.w.err |
| 181 | } |
| 182 | return nil |
| 183 | } |
| 184 | |
| 185 | // writeBlockSkip writes the current block and uses the number of tokens |
| 186 | // to determine if the block should be stored on no matches, or |
| 187 | // only huffman encoded. |
| 188 | func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error { |
| 189 | if index > 0 || eof { |
| 190 | if d.blockStart <= index { |
| 191 | window := d.window[d.blockStart:index] |
| 192 | // If we removed less than a 64th of all literals |
| 193 | // we huffman compress the block. |
| 194 | if int(tok.n) > len(window)-int(tok.n>>6) { |
| 195 | d.w.writeBlockHuff(eof, window, d.sync) |
| 196 | } else { |
| 197 | // Write a dynamic huffman block. |
| 198 | d.w.writeBlockDynamic(tok, eof, window, d.sync) |
| 199 | } |
| 200 | } else { |
| 201 | d.w.writeBlock(tok, eof, nil) |
| 202 | } |
| 203 | d.blockStart = index |
| 204 | return d.w.err |
| 205 | } |
| 206 | return nil |
| 207 | } |
| 208 | |
| 209 | // fillWindow will fill the current window with the supplied |
| 210 | // dictionary and calculate all hashes. |
| 211 | // This is much faster than doing a full encode. |
| 212 | // Should only be used after a start/reset. |
| 213 | func (d *compressor) fillWindow(b []byte) { |
| 214 | // Do not fill window if we are in store-only or huffman mode. |
| 215 | if d.level <= 0 && d.level > -MinCustomWindowSize { |
| 216 | return |
| 217 | } |
| 218 | if d.fast != nil { |
| 219 | // encode the last data, but discard the result |
| 220 | if len(b) > maxMatchOffset { |
| 221 | b = b[len(b)-maxMatchOffset:] |
| 222 | } |
| 223 | d.fast.Encode(&d.tokens, b) |
| 224 | d.tokens.Reset() |
| 225 | return |
| 226 | } |
| 227 | s := d.state |
| 228 | // If we are given too much, cut it. |
| 229 | if len(b) > windowSize { |
| 230 | b = b[len(b)-windowSize:] |
| 231 | } |
| 232 | // Add all to window. |
| 233 | n := copy(d.window[d.windowEnd:], b) |
| 234 | |
| 235 | // Calculate 256 hashes at the time (more L1 cache hits) |
| 236 | loops := (n + 256 - minMatchLength) / 256 |
| 237 | for j := 0; j < loops; j++ { |
| 238 | startindex := j * 256 |
| 239 | end := startindex + 256 + minMatchLength - 1 |
| 240 | if end > n { |
| 241 | end = n |
| 242 | } |
| 243 | tocheck := d.window[startindex:end] |
| 244 | dstSize := len(tocheck) - minMatchLength + 1 |
| 245 | |
| 246 | if dstSize <= 0 { |
| 247 | continue |
| 248 | } |
| 249 | |
| 250 | dst := s.hashMatch[:dstSize] |
| 251 | bulkHash4(tocheck, dst) |
| 252 | var newH uint32 |
| 253 | for i, val := range dst { |
| 254 | di := i + startindex |
| 255 | newH = val & hashMask |
| 256 | // Get previous value with the same hash. |
| 257 | // Our chain should point to the previous value. |
| 258 | s.hashPrev[di&windowMask] = s.hashHead[newH] |
| 259 | // Set the head of the hash chain to us. |
| 260 | s.hashHead[newH] = uint32(di + s.hashOffset) |
| 261 | } |
| 262 | } |
| 263 | // Update window information. |
| 264 | d.windowEnd += n |
| 265 | s.index = n |
| 266 | } |
| 267 | |
| 268 | // Try to find a match starting at index whose length is greater than prevSize. |
| 269 | // We only look at chainCount possibilities before giving up. |
| 270 | // pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead |
| 271 | func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) { |
| 272 | minMatchLook := maxMatchLength |
| 273 | if lookahead < minMatchLook { |
| 274 | minMatchLook = lookahead |
| 275 | } |
| 276 | |
| 277 | win := d.window[0 : pos+minMatchLook] |
| 278 | |
| 279 | // We quit when we get a match that's at least nice long |
| 280 | nice := len(win) - pos |
| 281 | if d.nice < nice { |
| 282 | nice = d.nice |
| 283 | } |
| 284 | |
| 285 | // If we've got a match that's good enough, only look in 1/4 the chain. |
| 286 | tries := d.chain |
| 287 | length = minMatchLength - 1 |
| 288 | |
| 289 | wEnd := win[pos+length] |
| 290 | wPos := win[pos:] |
| 291 | minIndex := pos - windowSize |
| 292 | if minIndex < 0 { |
| 293 | minIndex = 0 |
| 294 | } |
| 295 | offset = 0 |
| 296 | |
| 297 | if d.chain < 100 { |
| 298 | for i := prevHead; tries > 0; tries-- { |
| 299 | if wEnd == win[i+length] { |
| 300 | n := matchLen(win[i:i+minMatchLook], wPos) |
| 301 | if n > length { |
| 302 | length = n |
| 303 | offset = pos - i |
| 304 | ok = true |
| 305 | if n >= nice { |
| 306 | // The match is good enough that we don't try to find a better one. |
| 307 | break |
| 308 | } |
| 309 | wEnd = win[pos+n] |
| 310 | } |
| 311 | } |
| 312 | if i <= minIndex { |
| 313 | // hashPrev[i & windowMask] has already been overwritten, so stop now. |
| 314 | break |
| 315 | } |
| 316 | i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset |
| 317 | if i < minIndex { |
| 318 | break |
| 319 | } |
| 320 | } |
| 321 | return |
| 322 | } |
| 323 | |
| 324 | // Minimum gain to accept a match. |
| 325 | cGain := 4 |
| 326 | |
| 327 | // Some like it higher (CSV), some like it lower (JSON) |
| 328 | const baseCost = 3 |
| 329 | // Base is 4 bytes at with an additional cost. |
| 330 | // Matches must be better than this. |
| 331 | |
| 332 | for i := prevHead; tries > 0; tries-- { |
| 333 | if wEnd == win[i+length] { |
| 334 | n := matchLen(win[i:i+minMatchLook], wPos) |
| 335 | if n > length { |
| 336 | // Calculate gain. Estimate |
| 337 | newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]]) |
| 338 | |
| 339 | //fmt.Println("gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n]), "this-len:", n, "prev-len:", length) |
| 340 | if newGain > cGain { |
| 341 | length = n |
| 342 | offset = pos - i |
| 343 | cGain = newGain |
| 344 | ok = true |
| 345 | if n >= nice { |
| 346 | // The match is good enough that we don't try to find a better one. |
| 347 | break |
| 348 | } |
| 349 | wEnd = win[pos+n] |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | if i <= minIndex { |
| 354 | // hashPrev[i & windowMask] has already been overwritten, so stop now. |
| 355 | break |
| 356 | } |
| 357 | i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset |
| 358 | if i < minIndex { |
| 359 | break |
| 360 | } |
| 361 | } |
| 362 | return |
| 363 | } |
| 364 | |
| 365 | func (d *compressor) writeStoredBlock(buf []byte) error { |
| 366 | if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { |
| 367 | return d.w.err |
| 368 | } |
| 369 | d.w.writeBytes(buf) |
| 370 | return d.w.err |
| 371 | } |
| 372 | |
| 373 | // hash4 returns a hash representation of the first 4 bytes |
| 374 | // of the supplied slice. |
| 375 | // The caller must ensure that len(b) >= 4. |
| 376 | func hash4(b []byte) uint32 { |
| 377 | return hash4u(binary.LittleEndian.Uint32(b), hashBits) |
| 378 | } |
| 379 | |
| 380 | // hash4 returns the hash of u to fit in a hash table with h bits. |
| 381 | // Preferably h should be a constant and should always be <32. |
| 382 | func hash4u(u uint32, h uint8) uint32 { |
| 383 | return (u * prime4bytes) >> (32 - h) |
| 384 | } |
| 385 | |
| 386 | // bulkHash4 will compute hashes using the same |
| 387 | // algorithm as hash4 |
| 388 | func bulkHash4(b []byte, dst []uint32) { |
| 389 | if len(b) < 4 { |
| 390 | return |
| 391 | } |
| 392 | hb := binary.LittleEndian.Uint32(b) |
| 393 | |
| 394 | dst[0] = hash4u(hb, hashBits) |
| 395 | end := len(b) - 4 + 1 |
| 396 | for i := 1; i < end; i++ { |
| 397 | hb = (hb >> 8) | uint32(b[i+3])<<24 |
| 398 | dst[i] = hash4u(hb, hashBits) |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | func (d *compressor) initDeflate() { |
| 403 | d.window = make([]byte, 2*windowSize) |
| 404 | d.byteAvailable = false |
| 405 | d.err = nil |
| 406 | if d.state == nil { |
| 407 | return |
| 408 | } |
| 409 | s := d.state |
| 410 | s.index = 0 |
| 411 | s.hashOffset = 1 |
| 412 | s.length = minMatchLength - 1 |
| 413 | s.offset = 0 |
| 414 | s.chainHead = -1 |
| 415 | } |
| 416 | |
| 417 | // deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever, |
| 418 | // meaning it always has lazy matching on. |
| 419 | func (d *compressor) deflateLazy() { |
| 420 | s := d.state |
| 421 | // Sanity enables additional runtime tests. |
| 422 | // It's intended to be used during development |
| 423 | // to supplement the currently ad-hoc unit tests. |
| 424 | const sanity = debugDeflate |
| 425 | |
| 426 | if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync { |
| 427 | return |
| 428 | } |
| 429 | if d.windowEnd != s.index && d.chain > 100 { |
| 430 | // Get literal huffman coder. |
| 431 | if d.h == nil { |
| 432 | d.h = newHuffmanEncoder(maxFlateBlockTokens) |
| 433 | } |
| 434 | var tmp [256]uint16 |
| 435 | for _, v := range d.window[s.index:d.windowEnd] { |
| 436 | tmp[v]++ |
| 437 | } |
| 438 | d.h.generate(tmp[:], 15) |
| 439 | } |
| 440 | |
| 441 | s.maxInsertIndex = d.windowEnd - (minMatchLength - 1) |
| 442 | |
| 443 | for { |
| 444 | if sanity && s.index > d.windowEnd { |
| 445 | panic("index > windowEnd") |
| 446 | } |
| 447 | lookahead := d.windowEnd - s.index |
| 448 | if lookahead < minMatchLength+maxMatchLength { |
| 449 | if !d.sync { |
| 450 | return |
| 451 | } |
| 452 | if sanity && s.index > d.windowEnd { |
| 453 | panic("index > windowEnd") |
| 454 | } |
| 455 | if lookahead == 0 { |
| 456 | // Flush current output block if any. |
| 457 | if d.byteAvailable { |
| 458 | // There is still one pending token that needs to be flushed |
| 459 | d.tokens.AddLiteral(d.window[s.index-1]) |
| 460 | d.byteAvailable = false |
| 461 | } |
| 462 | if d.tokens.n > 0 { |
| 463 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 464 | return |
| 465 | } |
| 466 | d.tokens.Reset() |
| 467 | } |
| 468 | return |
| 469 | } |
| 470 | } |
| 471 | if s.index < s.maxInsertIndex { |
| 472 | // Update the hash |
| 473 | hash := hash4(d.window[s.index:]) |
| 474 | ch := s.hashHead[hash] |
| 475 | s.chainHead = int(ch) |
| 476 | s.hashPrev[s.index&windowMask] = ch |
| 477 | s.hashHead[hash] = uint32(s.index + s.hashOffset) |
| 478 | } |
| 479 | prevLength := s.length |
| 480 | prevOffset := s.offset |
| 481 | s.length = minMatchLength - 1 |
| 482 | s.offset = 0 |
| 483 | minIndex := s.index - windowSize |
| 484 | if minIndex < 0 { |
| 485 | minIndex = 0 |
| 486 | } |
| 487 | |
| 488 | if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy { |
| 489 | if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok { |
| 490 | s.length = newLength |
| 491 | s.offset = newOffset |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | if prevLength >= minMatchLength && s.length <= prevLength { |
| 496 | // No better match, but check for better match at end... |
| 497 | // |
| 498 | // Skip forward a number of bytes. |
| 499 | // Offset of 2 seems to yield best results. 3 is sometimes better. |
| 500 | const checkOff = 2 |
| 501 | |
| 502 | // Check all, except full length |
| 503 | if prevLength < maxMatchLength-checkOff { |
| 504 | prevIndex := s.index - 1 |
| 505 | if prevIndex+prevLength < s.maxInsertIndex { |
| 506 | end := lookahead |
| 507 | if lookahead > maxMatchLength+checkOff { |
| 508 | end = maxMatchLength + checkOff |
| 509 | } |
| 510 | end += prevIndex |
| 511 | |
| 512 | // Hash at match end. |
| 513 | h := hash4(d.window[prevIndex+prevLength:]) |
| 514 | ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength |
| 515 | if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff { |
| 516 | length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:]) |
| 517 | // It seems like a pure length metric is best. |
| 518 | if length > prevLength { |
| 519 | prevLength = length |
| 520 | prevOffset = prevIndex - ch2 |
| 521 | |
| 522 | // Extend back... |
| 523 | for i := checkOff - 1; i >= 0; i-- { |
| 524 | if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i] { |
| 525 | // Emit tokens we "owe" |
| 526 | for j := 0; j <= i; j++ { |
| 527 | d.tokens.AddLiteral(d.window[prevIndex+j]) |
| 528 | if d.tokens.n == maxFlateBlockTokens { |
| 529 | // The block includes the current character |
| 530 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 531 | return |
| 532 | } |
| 533 | d.tokens.Reset() |
| 534 | } |
| 535 | s.index++ |
| 536 | if s.index < s.maxInsertIndex { |
| 537 | h := hash4(d.window[s.index:]) |
| 538 | ch := s.hashHead[h] |
| 539 | s.chainHead = int(ch) |
| 540 | s.hashPrev[s.index&windowMask] = ch |
| 541 | s.hashHead[h] = uint32(s.index + s.hashOffset) |
| 542 | } |
| 543 | } |
| 544 | break |
| 545 | } else { |
| 546 | prevLength++ |
| 547 | } |
| 548 | } |
| 549 | } else if false { |
| 550 | // Check one further ahead. |
| 551 | // Only rarely better, disabled for now. |
| 552 | prevIndex++ |
| 553 | h := hash4(d.window[prevIndex+prevLength:]) |
| 554 | ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength |
| 555 | if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff { |
| 556 | length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:]) |
| 557 | // It seems like a pure length metric is best. |
| 558 | if length > prevLength+checkOff { |
| 559 | prevLength = length |
| 560 | prevOffset = prevIndex - ch2 |
| 561 | prevIndex-- |
| 562 | |
| 563 | // Extend back... |
| 564 | for i := checkOff; i >= 0; i-- { |
| 565 | if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i-1] { |
| 566 | // Emit tokens we "owe" |
| 567 | for j := 0; j <= i; j++ { |
| 568 | d.tokens.AddLiteral(d.window[prevIndex+j]) |
| 569 | if d.tokens.n == maxFlateBlockTokens { |
| 570 | // The block includes the current character |
| 571 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 572 | return |
| 573 | } |
| 574 | d.tokens.Reset() |
| 575 | } |
| 576 | s.index++ |
| 577 | if s.index < s.maxInsertIndex { |
| 578 | h := hash4(d.window[s.index:]) |
| 579 | ch := s.hashHead[h] |
| 580 | s.chainHead = int(ch) |
| 581 | s.hashPrev[s.index&windowMask] = ch |
| 582 | s.hashHead[h] = uint32(s.index + s.hashOffset) |
| 583 | } |
| 584 | } |
| 585 | break |
| 586 | } else { |
| 587 | prevLength++ |
| 588 | } |
| 589 | } |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | // There was a match at the previous step, and the current match is |
| 597 | // not better. Output the previous match. |
| 598 | d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize)) |
| 599 | |
| 600 | // Insert in the hash table all strings up to the end of the match. |
| 601 | // index and index-1 are already inserted. If there is not enough |
| 602 | // lookahead, the last two strings are not inserted into the hash |
| 603 | // table. |
| 604 | newIndex := s.index + prevLength - 1 |
| 605 | // Calculate missing hashes |
| 606 | end := newIndex |
| 607 | if end > s.maxInsertIndex { |
| 608 | end = s.maxInsertIndex |
| 609 | } |
| 610 | end += minMatchLength - 1 |
| 611 | startindex := s.index + 1 |
| 612 | if startindex > s.maxInsertIndex { |
| 613 | startindex = s.maxInsertIndex |
| 614 | } |
| 615 | tocheck := d.window[startindex:end] |
| 616 | dstSize := len(tocheck) - minMatchLength + 1 |
| 617 | if dstSize > 0 { |
| 618 | dst := s.hashMatch[:dstSize] |
| 619 | bulkHash4(tocheck, dst) |
| 620 | var newH uint32 |
| 621 | for i, val := range dst { |
| 622 | di := i + startindex |
| 623 | newH = val & hashMask |
| 624 | // Get previous value with the same hash. |
| 625 | // Our chain should point to the previous value. |
| 626 | s.hashPrev[di&windowMask] = s.hashHead[newH] |
| 627 | // Set the head of the hash chain to us. |
| 628 | s.hashHead[newH] = uint32(di + s.hashOffset) |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | s.index = newIndex |
| 633 | d.byteAvailable = false |
| 634 | s.length = minMatchLength - 1 |
| 635 | if d.tokens.n == maxFlateBlockTokens { |
| 636 | // The block includes the current character |
| 637 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 638 | return |
| 639 | } |
| 640 | d.tokens.Reset() |
| 641 | } |
| 642 | s.ii = 0 |
| 643 | } else { |
| 644 | // Reset, if we got a match this run. |
| 645 | if s.length >= minMatchLength { |
| 646 | s.ii = 0 |
| 647 | } |
| 648 | // We have a byte waiting. Emit it. |
| 649 | if d.byteAvailable { |
| 650 | s.ii++ |
| 651 | d.tokens.AddLiteral(d.window[s.index-1]) |
| 652 | if d.tokens.n == maxFlateBlockTokens { |
| 653 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 654 | return |
| 655 | } |
| 656 | d.tokens.Reset() |
| 657 | } |
| 658 | s.index++ |
| 659 | |
| 660 | // If we have a long run of no matches, skip additional bytes |
| 661 | // Resets when s.ii overflows after 64KB. |
| 662 | if n := int(s.ii) - d.chain; n > 0 { |
| 663 | n = 1 + int(n>>6) |
| 664 | for j := 0; j < n; j++ { |
| 665 | if s.index >= d.windowEnd-1 { |
| 666 | break |
| 667 | } |
| 668 | d.tokens.AddLiteral(d.window[s.index-1]) |
| 669 | if d.tokens.n == maxFlateBlockTokens { |
| 670 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 671 | return |
| 672 | } |
| 673 | d.tokens.Reset() |
| 674 | } |
| 675 | // Index... |
| 676 | if s.index < s.maxInsertIndex { |
| 677 | h := hash4(d.window[s.index:]) |
| 678 | ch := s.hashHead[h] |
| 679 | s.chainHead = int(ch) |
| 680 | s.hashPrev[s.index&windowMask] = ch |
| 681 | s.hashHead[h] = uint32(s.index + s.hashOffset) |
| 682 | } |
| 683 | s.index++ |
| 684 | } |
| 685 | // Flush last byte |
| 686 | d.tokens.AddLiteral(d.window[s.index-1]) |
| 687 | d.byteAvailable = false |
| 688 | // s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength |
| 689 | if d.tokens.n == maxFlateBlockTokens { |
| 690 | if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
| 691 | return |
| 692 | } |
| 693 | d.tokens.Reset() |
| 694 | } |
| 695 | } |
| 696 | } else { |
| 697 | s.index++ |
| 698 | d.byteAvailable = true |
| 699 | } |
| 700 | } |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | func (d *compressor) store() { |
| 705 | if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { |
| 706 | d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
| 707 | d.windowEnd = 0 |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | // fillWindow will fill the buffer with data for huffman-only compression. |
| 712 | // The number of bytes copied is returned. |
| 713 | func (d *compressor) fillBlock(b []byte) int { |
| 714 | n := copy(d.window[d.windowEnd:], b) |
| 715 | d.windowEnd += n |
| 716 | return n |
| 717 | } |
| 718 | |
| 719 | // storeHuff will compress and store the currently added data, |
| 720 | // if enough has been accumulated or we at the end of the stream. |
| 721 | // Any error that occurred will be in d.err |
| 722 | func (d *compressor) storeHuff() { |
| 723 | if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { |
| 724 | return |
| 725 | } |
| 726 | d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync) |
| 727 | d.err = d.w.err |
| 728 | d.windowEnd = 0 |
| 729 | } |
| 730 | |
| 731 | // storeFast will compress and store the currently added data, |
| 732 | // if enough has been accumulated or we at the end of the stream. |
| 733 | // Any error that occurred will be in d.err |
| 734 | func (d *compressor) storeFast() { |
| 735 | // We only compress if we have maxStoreBlockSize. |
| 736 | if d.windowEnd < len(d.window) { |
| 737 | if !d.sync { |
| 738 | return |
| 739 | } |
| 740 | // Handle extremely small sizes. |
| 741 | if d.windowEnd < 128 { |
| 742 | if d.windowEnd == 0 { |
| 743 | return |
| 744 | } |
| 745 | if d.windowEnd <= 32 { |
| 746 | d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
| 747 | } else { |
| 748 | d.w.writeBlockHuff(false, d.window[:d.windowEnd], true) |
| 749 | d.err = d.w.err |
| 750 | } |
| 751 | d.tokens.Reset() |
| 752 | d.windowEnd = 0 |
| 753 | d.fast.Reset() |
| 754 | return |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | d.fast.Encode(&d.tokens, d.window[:d.windowEnd]) |
| 759 | // If we made zero matches, store the block as is. |
| 760 | if d.tokens.n == 0 { |
| 761 | d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
| 762 | // If we removed less than 1/16th, huffman compress the block. |
| 763 | } else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) { |
| 764 | d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync) |
| 765 | d.err = d.w.err |
| 766 | } else { |
| 767 | d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync) |
| 768 | d.err = d.w.err |
| 769 | } |
| 770 | d.tokens.Reset() |
| 771 | d.windowEnd = 0 |
| 772 | } |
| 773 | |
| 774 | // write will add input byte to the stream. |
| 775 | // Unless an error occurs all bytes will be consumed. |
| 776 | func (d *compressor) write(b []byte) (n int, err error) { |
| 777 | if d.err != nil { |
| 778 | return 0, d.err |
| 779 | } |
| 780 | n = len(b) |
| 781 | for len(b) > 0 { |
| 782 | if d.windowEnd == len(d.window) || d.sync { |
| 783 | d.step(d) |
| 784 | } |
| 785 | b = b[d.fill(d, b):] |
| 786 | if d.err != nil { |
| 787 | return 0, d.err |
| 788 | } |
| 789 | } |
| 790 | return n, d.err |
| 791 | } |
| 792 | |
| 793 | func (d *compressor) syncFlush() error { |
| 794 | d.sync = true |
| 795 | if d.err != nil { |
| 796 | return d.err |
| 797 | } |
| 798 | d.step(d) |
| 799 | if d.err == nil { |
| 800 | d.w.writeStoredHeader(0, false) |
| 801 | d.w.flush() |
| 802 | d.err = d.w.err |
| 803 | } |
| 804 | d.sync = false |
| 805 | return d.err |
| 806 | } |
| 807 | |
| 808 | func (d *compressor) init(w io.Writer, level int) (err error) { |
| 809 | d.w = newHuffmanBitWriter(w) |
| 810 | |
| 811 | switch { |
| 812 | case level == NoCompression: |
| 813 | d.window = make([]byte, maxStoreBlockSize) |
| 814 | d.fill = (*compressor).fillBlock |
| 815 | d.step = (*compressor).store |
| 816 | case level == ConstantCompression: |
| 817 | d.w.logNewTablePenalty = 10 |
| 818 | d.window = make([]byte, 32<<10) |
| 819 | d.fill = (*compressor).fillBlock |
| 820 | d.step = (*compressor).storeHuff |
| 821 | case level == DefaultCompression: |
| 822 | level = 5 |
| 823 | fallthrough |
| 824 | case level >= 1 && level <= 6: |
| 825 | d.w.logNewTablePenalty = 7 |
| 826 | d.fast = newFastEnc(level) |
| 827 | d.window = make([]byte, maxStoreBlockSize) |
| 828 | d.fill = (*compressor).fillBlock |
| 829 | d.step = (*compressor).storeFast |
| 830 | case 7 <= level && level <= 9: |
| 831 | d.w.logNewTablePenalty = 8 |
| 832 | d.state = &advancedState{} |
| 833 | d.compressionLevel = levels[level] |
| 834 | d.initDeflate() |
| 835 | d.fill = (*compressor).fillDeflate |
| 836 | d.step = (*compressor).deflateLazy |
| 837 | case -level >= MinCustomWindowSize && -level <= MaxCustomWindowSize: |
| 838 | d.w.logNewTablePenalty = 7 |
| 839 | d.fast = &fastEncL5Window{maxOffset: int32(-level), cur: maxStoreBlockSize} |
| 840 | d.window = make([]byte, maxStoreBlockSize) |
| 841 | d.fill = (*compressor).fillBlock |
| 842 | d.step = (*compressor).storeFast |
| 843 | default: |
| 844 | return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) |
| 845 | } |
| 846 | d.level = level |
| 847 | return nil |
| 848 | } |
| 849 | |
| 850 | // reset the state of the compressor. |
| 851 | func (d *compressor) reset(w io.Writer) { |
| 852 | d.w.reset(w) |
| 853 | d.sync = false |
| 854 | d.err = nil |
| 855 | // We only need to reset a few things for Snappy. |
| 856 | if d.fast != nil { |
| 857 | d.fast.Reset() |
| 858 | d.windowEnd = 0 |
| 859 | d.tokens.Reset() |
| 860 | return |
| 861 | } |
| 862 | switch d.compressionLevel.chain { |
| 863 | case 0: |
| 864 | // level was NoCompression or ConstantCompression. |
| 865 | d.windowEnd = 0 |
| 866 | default: |
| 867 | s := d.state |
| 868 | s.chainHead = -1 |
| 869 | for i := range s.hashHead { |
| 870 | s.hashHead[i] = 0 |
| 871 | } |
| 872 | for i := range s.hashPrev { |
| 873 | s.hashPrev[i] = 0 |
| 874 | } |
| 875 | s.hashOffset = 1 |
| 876 | s.index, d.windowEnd = 0, 0 |
| 877 | d.blockStart, d.byteAvailable = 0, false |
| 878 | d.tokens.Reset() |
| 879 | s.length = minMatchLength - 1 |
| 880 | s.offset = 0 |
| 881 | s.ii = 0 |
| 882 | s.maxInsertIndex = 0 |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | func (d *compressor) close() error { |
| 887 | if d.err != nil { |
| 888 | return d.err |
| 889 | } |
| 890 | d.sync = true |
| 891 | d.step(d) |
| 892 | if d.err != nil { |
| 893 | return d.err |
| 894 | } |
| 895 | if d.w.writeStoredHeader(0, true); d.w.err != nil { |
| 896 | return d.w.err |
| 897 | } |
| 898 | d.w.flush() |
| 899 | d.w.reset(nil) |
| 900 | return d.w.err |
| 901 | } |
| 902 | |
| 903 | // NewWriter returns a new Writer compressing data at the given level. |
| 904 | // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression); |
| 905 | // higher levels typically run slower but compress more. |
| 906 | // Level 0 (NoCompression) does not attempt any compression; it only adds the |
| 907 | // necessary DEFLATE framing. |
| 908 | // Level -1 (DefaultCompression) uses the default compression level. |
| 909 | // Level -2 (ConstantCompression) will use Huffman compression only, giving |
| 910 | // a very fast compression for all types of input, but sacrificing considerable |
| 911 | // compression efficiency. |
| 912 | // |
| 913 | // If level is in the range [-2, 9] then the error returned will be nil. |
| 914 | // Otherwise the error returned will be non-nil. |
| 915 | func NewWriter(w io.Writer, level int) (*Writer, error) { |
| 916 | var dw Writer |
| 917 | if err := dw.d.init(w, level); err != nil { |
| 918 | return nil, err |
| 919 | } |
| 920 | return &dw, nil |
| 921 | } |
| 922 | |
| 923 | // NewWriterDict is like NewWriter but initializes the new |
| 924 | // Writer with a preset dictionary. The returned Writer behaves |
| 925 | // as if the dictionary had been written to it without producing |
| 926 | // any compressed output. The compressed data written to w |
| 927 | // can only be decompressed by a Reader initialized with the |
| 928 | // same dictionary. |
| 929 | func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { |
| 930 | zw, err := NewWriter(w, level) |
| 931 | if err != nil { |
| 932 | return nil, err |
| 933 | } |
| 934 | zw.d.fillWindow(dict) |
| 935 | zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. |
| 936 | return zw, err |
| 937 | } |
| 938 | |
| 939 | // MinCustomWindowSize is the minimum window size that can be sent to NewWriterWindow. |
| 940 | const MinCustomWindowSize = 32 |
| 941 | |
| 942 | // MaxCustomWindowSize is the maximum custom window that can be sent to NewWriterWindow. |
| 943 | const MaxCustomWindowSize = windowSize |
| 944 | |
| 945 | // NewWriterWindow returns a new Writer compressing data with a custom window size. |
| 946 | // windowSize must be from MinCustomWindowSize to MaxCustomWindowSize. |
| 947 | func NewWriterWindow(w io.Writer, windowSize int) (*Writer, error) { |
| 948 | if windowSize < MinCustomWindowSize { |
| 949 | return nil, errors.New("flate: requested window size less than MinWindowSize") |
| 950 | } |
| 951 | if windowSize > MaxCustomWindowSize { |
| 952 | return nil, errors.New("flate: requested window size bigger than MaxCustomWindowSize") |
| 953 | } |
| 954 | var dw Writer |
| 955 | if err := dw.d.init(w, -windowSize); err != nil { |
| 956 | return nil, err |
| 957 | } |
| 958 | return &dw, nil |
| 959 | } |
| 960 | |
| 961 | // A Writer takes data written to it and writes the compressed |
| 962 | // form of that data to an underlying writer (see NewWriter). |
| 963 | type Writer struct { |
| 964 | d compressor |
| 965 | dict []byte |
| 966 | } |
| 967 | |
| 968 | // Write writes data to w, which will eventually write the |
| 969 | // compressed form of data to its underlying writer. |
| 970 | func (w *Writer) Write(data []byte) (n int, err error) { |
| 971 | return w.d.write(data) |
| 972 | } |
| 973 | |
| 974 | // Flush flushes any pending data to the underlying writer. |
| 975 | // It is useful mainly in compressed network protocols, to ensure that |
| 976 | // a remote reader has enough data to reconstruct a packet. |
| 977 | // Flush does not return until the data has been written. |
| 978 | // Calling Flush when there is no pending data still causes the Writer |
| 979 | // to emit a sync marker of at least 4 bytes. |
| 980 | // If the underlying writer returns an error, Flush returns that error. |
| 981 | // |
| 982 | // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. |
| 983 | func (w *Writer) Flush() error { |
| 984 | // For more about flushing: |
| 985 | // http://www.bolet.org/~pornin/deflate-flush.html |
| 986 | return w.d.syncFlush() |
| 987 | } |
| 988 | |
| 989 | // Close flushes and closes the writer. |
| 990 | func (w *Writer) Close() error { |
| 991 | return w.d.close() |
| 992 | } |
| 993 | |
| 994 | // Reset discards the writer's state and makes it equivalent to |
| 995 | // the result of NewWriter or NewWriterDict called with dst |
| 996 | // and w's level and dictionary. |
| 997 | func (w *Writer) Reset(dst io.Writer) { |
| 998 | if len(w.dict) > 0 { |
| 999 | // w was created with NewWriterDict |
| 1000 | w.d.reset(dst) |
| 1001 | if dst != nil { |
| 1002 | w.d.fillWindow(w.dict) |
| 1003 | } |
| 1004 | } else { |
| 1005 | // w was created with NewWriter |
| 1006 | w.d.reset(dst) |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | // ResetDict discards the writer's state and makes it equivalent to |
| 1011 | // the result of NewWriter or NewWriterDict called with dst |
| 1012 | // and w's level, but sets a specific dictionary. |
| 1013 | func (w *Writer) ResetDict(dst io.Writer, dict []byte) { |
| 1014 | w.dict = dict |
| 1015 | w.d.reset(dst) |
| 1016 | w.d.fillWindow(w.dict) |
| 1017 | } |