| Abhay Kumar | a2ae599 | 2025-11-10 14:02:24 +0000 | [diff] [blame^] | 1 | // Copyright 2017, The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | package cmp |
| 6 | |
| 7 | import ( |
| 8 | "fmt" |
| 9 | "reflect" |
| 10 | "strings" |
| 11 | "unicode" |
| 12 | "unicode/utf8" |
| 13 | |
| 14 | "github.com/google/go-cmp/cmp/internal/value" |
| 15 | ) |
| 16 | |
| 17 | // Path is a list of [PathStep] describing the sequence of operations to get |
| 18 | // from some root type to the current position in the value tree. |
| 19 | // The first Path element is always an operation-less [PathStep] that exists |
| 20 | // simply to identify the initial type. |
| 21 | // |
| 22 | // When traversing structs with embedded structs, the embedded struct will |
| 23 | // always be accessed as a field before traversing the fields of the |
| 24 | // embedded struct themselves. That is, an exported field from the |
| 25 | // embedded struct will never be accessed directly from the parent struct. |
| 26 | type Path []PathStep |
| 27 | |
| 28 | // PathStep is a union-type for specific operations to traverse |
| 29 | // a value's tree structure. Users of this package never need to implement |
| 30 | // these types as values of this type will be returned by this package. |
| 31 | // |
| 32 | // Implementations of this interface: |
| 33 | // - [StructField] |
| 34 | // - [SliceIndex] |
| 35 | // - [MapIndex] |
| 36 | // - [Indirect] |
| 37 | // - [TypeAssertion] |
| 38 | // - [Transform] |
| 39 | type PathStep interface { |
| 40 | String() string |
| 41 | |
| 42 | // Type is the resulting type after performing the path step. |
| 43 | Type() reflect.Type |
| 44 | |
| 45 | // Values is the resulting values after performing the path step. |
| 46 | // The type of each valid value is guaranteed to be identical to Type. |
| 47 | // |
| 48 | // In some cases, one or both may be invalid or have restrictions: |
| 49 | // - For StructField, both are not interface-able if the current field |
| 50 | // is unexported and the struct type is not explicitly permitted by |
| 51 | // an Exporter to traverse unexported fields. |
| 52 | // - For SliceIndex, one may be invalid if an element is missing from |
| 53 | // either the x or y slice. |
| 54 | // - For MapIndex, one may be invalid if an entry is missing from |
| 55 | // either the x or y map. |
| 56 | // |
| 57 | // The provided values must not be mutated. |
| 58 | Values() (vx, vy reflect.Value) |
| 59 | } |
| 60 | |
| 61 | var ( |
| 62 | _ PathStep = StructField{} |
| 63 | _ PathStep = SliceIndex{} |
| 64 | _ PathStep = MapIndex{} |
| 65 | _ PathStep = Indirect{} |
| 66 | _ PathStep = TypeAssertion{} |
| 67 | _ PathStep = Transform{} |
| 68 | ) |
| 69 | |
| 70 | func (pa *Path) push(s PathStep) { |
| 71 | *pa = append(*pa, s) |
| 72 | } |
| 73 | |
| 74 | func (pa *Path) pop() { |
| 75 | *pa = (*pa)[:len(*pa)-1] |
| 76 | } |
| 77 | |
| 78 | // Last returns the last [PathStep] in the Path. |
| 79 | // If the path is empty, this returns a non-nil [PathStep] |
| 80 | // that reports a nil [PathStep.Type]. |
| 81 | func (pa Path) Last() PathStep { |
| 82 | return pa.Index(-1) |
| 83 | } |
| 84 | |
| 85 | // Index returns the ith step in the Path and supports negative indexing. |
| 86 | // A negative index starts counting from the tail of the Path such that -1 |
| 87 | // refers to the last step, -2 refers to the second-to-last step, and so on. |
| 88 | // If index is invalid, this returns a non-nil [PathStep] |
| 89 | // that reports a nil [PathStep.Type]. |
| 90 | func (pa Path) Index(i int) PathStep { |
| 91 | if i < 0 { |
| 92 | i = len(pa) + i |
| 93 | } |
| 94 | if i < 0 || i >= len(pa) { |
| 95 | return pathStep{} |
| 96 | } |
| 97 | return pa[i] |
| 98 | } |
| 99 | |
| 100 | // String returns the simplified path to a node. |
| 101 | // The simplified path only contains struct field accesses. |
| 102 | // |
| 103 | // For example: |
| 104 | // |
| 105 | // MyMap.MySlices.MyField |
| 106 | func (pa Path) String() string { |
| 107 | var ss []string |
| 108 | for _, s := range pa { |
| 109 | if _, ok := s.(StructField); ok { |
| 110 | ss = append(ss, s.String()) |
| 111 | } |
| 112 | } |
| 113 | return strings.TrimPrefix(strings.Join(ss, ""), ".") |
| 114 | } |
| 115 | |
| 116 | // GoString returns the path to a specific node using Go syntax. |
| 117 | // |
| 118 | // For example: |
| 119 | // |
| 120 | // (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField |
| 121 | func (pa Path) GoString() string { |
| 122 | var ssPre, ssPost []string |
| 123 | var numIndirect int |
| 124 | for i, s := range pa { |
| 125 | var nextStep PathStep |
| 126 | if i+1 < len(pa) { |
| 127 | nextStep = pa[i+1] |
| 128 | } |
| 129 | switch s := s.(type) { |
| 130 | case Indirect: |
| 131 | numIndirect++ |
| 132 | pPre, pPost := "(", ")" |
| 133 | switch nextStep.(type) { |
| 134 | case Indirect: |
| 135 | continue // Next step is indirection, so let them batch up |
| 136 | case StructField: |
| 137 | numIndirect-- // Automatic indirection on struct fields |
| 138 | case nil: |
| 139 | pPre, pPost = "", "" // Last step; no need for parenthesis |
| 140 | } |
| 141 | if numIndirect > 0 { |
| 142 | ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect)) |
| 143 | ssPost = append(ssPost, pPost) |
| 144 | } |
| 145 | numIndirect = 0 |
| 146 | continue |
| 147 | case Transform: |
| 148 | ssPre = append(ssPre, s.trans.name+"(") |
| 149 | ssPost = append(ssPost, ")") |
| 150 | continue |
| 151 | } |
| 152 | ssPost = append(ssPost, s.String()) |
| 153 | } |
| 154 | for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 { |
| 155 | ssPre[i], ssPre[j] = ssPre[j], ssPre[i] |
| 156 | } |
| 157 | return strings.Join(ssPre, "") + strings.Join(ssPost, "") |
| 158 | } |
| 159 | |
| 160 | type pathStep struct { |
| 161 | typ reflect.Type |
| 162 | vx, vy reflect.Value |
| 163 | } |
| 164 | |
| 165 | func (ps pathStep) Type() reflect.Type { return ps.typ } |
| 166 | func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy } |
| 167 | func (ps pathStep) String() string { |
| 168 | if ps.typ == nil { |
| 169 | return "<nil>" |
| 170 | } |
| 171 | s := value.TypeString(ps.typ, false) |
| 172 | if s == "" || strings.ContainsAny(s, "{}\n") { |
| 173 | return "root" // Type too simple or complex to print |
| 174 | } |
| 175 | return fmt.Sprintf("{%s}", s) |
| 176 | } |
| 177 | |
| 178 | // StructField is a [PathStep] that represents a struct field access |
| 179 | // on a field called [StructField.Name]. |
| 180 | type StructField struct{ *structField } |
| 181 | type structField struct { |
| 182 | pathStep |
| 183 | name string |
| 184 | idx int |
| 185 | |
| 186 | // These fields are used for forcibly accessing an unexported field. |
| 187 | // pvx, pvy, and field are only valid if unexported is true. |
| 188 | unexported bool |
| 189 | mayForce bool // Forcibly allow visibility |
| 190 | paddr bool // Was parent addressable? |
| 191 | pvx, pvy reflect.Value // Parent values (always addressable) |
| 192 | field reflect.StructField // Field information |
| 193 | } |
| 194 | |
| 195 | func (sf StructField) Type() reflect.Type { return sf.typ } |
| 196 | func (sf StructField) Values() (vx, vy reflect.Value) { |
| 197 | if !sf.unexported { |
| 198 | return sf.vx, sf.vy // CanInterface reports true |
| 199 | } |
| 200 | |
| 201 | // Forcibly obtain read-write access to an unexported struct field. |
| 202 | if sf.mayForce { |
| 203 | vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr) |
| 204 | vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr) |
| 205 | return vx, vy // CanInterface reports true |
| 206 | } |
| 207 | return sf.vx, sf.vy // CanInterface reports false |
| 208 | } |
| 209 | func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) } |
| 210 | |
| 211 | // Name is the field name. |
| 212 | func (sf StructField) Name() string { return sf.name } |
| 213 | |
| 214 | // Index is the index of the field in the parent struct type. |
| 215 | // See [reflect.Type.Field]. |
| 216 | func (sf StructField) Index() int { return sf.idx } |
| 217 | |
| 218 | // SliceIndex is a [PathStep] that represents an index operation on |
| 219 | // a slice or array at some index [SliceIndex.Key]. |
| 220 | type SliceIndex struct{ *sliceIndex } |
| 221 | type sliceIndex struct { |
| 222 | pathStep |
| 223 | xkey, ykey int |
| 224 | isSlice bool // False for reflect.Array |
| 225 | } |
| 226 | |
| 227 | func (si SliceIndex) Type() reflect.Type { return si.typ } |
| 228 | func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy } |
| 229 | func (si SliceIndex) String() string { |
| 230 | switch { |
| 231 | case si.xkey == si.ykey: |
| 232 | return fmt.Sprintf("[%d]", si.xkey) |
| 233 | case si.ykey == -1: |
| 234 | // [5->?] means "I don't know where X[5] went" |
| 235 | return fmt.Sprintf("[%d->?]", si.xkey) |
| 236 | case si.xkey == -1: |
| 237 | // [?->3] means "I don't know where Y[3] came from" |
| 238 | return fmt.Sprintf("[?->%d]", si.ykey) |
| 239 | default: |
| 240 | // [5->3] means "X[5] moved to Y[3]" |
| 241 | return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey) |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | // Key is the index key; it may return -1 if in a split state |
| 246 | func (si SliceIndex) Key() int { |
| 247 | if si.xkey != si.ykey { |
| 248 | return -1 |
| 249 | } |
| 250 | return si.xkey |
| 251 | } |
| 252 | |
| 253 | // SplitKeys are the indexes for indexing into slices in the |
| 254 | // x and y values, respectively. These indexes may differ due to the |
| 255 | // insertion or removal of an element in one of the slices, causing |
| 256 | // all of the indexes to be shifted. If an index is -1, then that |
| 257 | // indicates that the element does not exist in the associated slice. |
| 258 | // |
| 259 | // [SliceIndex.Key] is guaranteed to return -1 if and only if the indexes |
| 260 | // returned by SplitKeys are not the same. SplitKeys will never return -1 for |
| 261 | // both indexes. |
| 262 | func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey } |
| 263 | |
| 264 | // MapIndex is a [PathStep] that represents an index operation on a map at some index Key. |
| 265 | type MapIndex struct{ *mapIndex } |
| 266 | type mapIndex struct { |
| 267 | pathStep |
| 268 | key reflect.Value |
| 269 | } |
| 270 | |
| 271 | func (mi MapIndex) Type() reflect.Type { return mi.typ } |
| 272 | func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy } |
| 273 | func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) } |
| 274 | |
| 275 | // Key is the value of the map key. |
| 276 | func (mi MapIndex) Key() reflect.Value { return mi.key } |
| 277 | |
| 278 | // Indirect is a [PathStep] that represents pointer indirection on the parent type. |
| 279 | type Indirect struct{ *indirect } |
| 280 | type indirect struct { |
| 281 | pathStep |
| 282 | } |
| 283 | |
| 284 | func (in Indirect) Type() reflect.Type { return in.typ } |
| 285 | func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy } |
| 286 | func (in Indirect) String() string { return "*" } |
| 287 | |
| 288 | // TypeAssertion is a [PathStep] that represents a type assertion on an interface. |
| 289 | type TypeAssertion struct{ *typeAssertion } |
| 290 | type typeAssertion struct { |
| 291 | pathStep |
| 292 | } |
| 293 | |
| 294 | func (ta TypeAssertion) Type() reflect.Type { return ta.typ } |
| 295 | func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy } |
| 296 | func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", value.TypeString(ta.typ, false)) } |
| 297 | |
| 298 | // Transform is a [PathStep] that represents a transformation |
| 299 | // from the parent type to the current type. |
| 300 | type Transform struct{ *transform } |
| 301 | type transform struct { |
| 302 | pathStep |
| 303 | trans *transformer |
| 304 | } |
| 305 | |
| 306 | func (tf Transform) Type() reflect.Type { return tf.typ } |
| 307 | func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy } |
| 308 | func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) } |
| 309 | |
| 310 | // Name is the name of the [Transformer]. |
| 311 | func (tf Transform) Name() string { return tf.trans.name } |
| 312 | |
| 313 | // Func is the function pointer to the transformer function. |
| 314 | func (tf Transform) Func() reflect.Value { return tf.trans.fnc } |
| 315 | |
| 316 | // Option returns the originally constructed [Transformer] option. |
| 317 | // The == operator can be used to detect the exact option used. |
| 318 | func (tf Transform) Option() Option { return tf.trans } |
| 319 | |
| 320 | // pointerPath represents a dual-stack of pointers encountered when |
| 321 | // recursively traversing the x and y values. This data structure supports |
| 322 | // detection of cycles and determining whether the cycles are equal. |
| 323 | // In Go, cycles can occur via pointers, slices, and maps. |
| 324 | // |
| 325 | // The pointerPath uses a map to represent a stack; where descension into a |
| 326 | // pointer pushes the address onto the stack, and ascension from a pointer |
| 327 | // pops the address from the stack. Thus, when traversing into a pointer from |
| 328 | // reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles |
| 329 | // by checking whether the pointer has already been visited. The cycle detection |
| 330 | // uses a separate stack for the x and y values. |
| 331 | // |
| 332 | // If a cycle is detected we need to determine whether the two pointers |
| 333 | // should be considered equal. The definition of equality chosen by Equal |
| 334 | // requires two graphs to have the same structure. To determine this, both the |
| 335 | // x and y values must have a cycle where the previous pointers were also |
| 336 | // encountered together as a pair. |
| 337 | // |
| 338 | // Semantically, this is equivalent to augmenting Indirect, SliceIndex, and |
| 339 | // MapIndex with pointer information for the x and y values. |
| 340 | // Suppose px and py are two pointers to compare, we then search the |
| 341 | // Path for whether px was ever encountered in the Path history of x, and |
| 342 | // similarly so with py. If either side has a cycle, the comparison is only |
| 343 | // equal if both px and py have a cycle resulting from the same PathStep. |
| 344 | // |
| 345 | // Using a map as a stack is more performant as we can perform cycle detection |
| 346 | // in O(1) instead of O(N) where N is len(Path). |
| 347 | type pointerPath struct { |
| 348 | // mx is keyed by x pointers, where the value is the associated y pointer. |
| 349 | mx map[value.Pointer]value.Pointer |
| 350 | // my is keyed by y pointers, where the value is the associated x pointer. |
| 351 | my map[value.Pointer]value.Pointer |
| 352 | } |
| 353 | |
| 354 | func (p *pointerPath) Init() { |
| 355 | p.mx = make(map[value.Pointer]value.Pointer) |
| 356 | p.my = make(map[value.Pointer]value.Pointer) |
| 357 | } |
| 358 | |
| 359 | // Push indicates intent to descend into pointers vx and vy where |
| 360 | // visited reports whether either has been seen before. If visited before, |
| 361 | // equal reports whether both pointers were encountered together. |
| 362 | // Pop must be called if and only if the pointers were never visited. |
| 363 | // |
| 364 | // The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map |
| 365 | // and be non-nil. |
| 366 | func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) { |
| 367 | px := value.PointerOf(vx) |
| 368 | py := value.PointerOf(vy) |
| 369 | _, ok1 := p.mx[px] |
| 370 | _, ok2 := p.my[py] |
| 371 | if ok1 || ok2 { |
| 372 | equal = p.mx[px] == py && p.my[py] == px // Pointers paired together |
| 373 | return equal, true |
| 374 | } |
| 375 | p.mx[px] = py |
| 376 | p.my[py] = px |
| 377 | return false, false |
| 378 | } |
| 379 | |
| 380 | // Pop ascends from pointers vx and vy. |
| 381 | func (p pointerPath) Pop(vx, vy reflect.Value) { |
| 382 | delete(p.mx, value.PointerOf(vx)) |
| 383 | delete(p.my, value.PointerOf(vy)) |
| 384 | } |
| 385 | |
| 386 | // isExported reports whether the identifier is exported. |
| 387 | func isExported(id string) bool { |
| 388 | r, _ := utf8.DecodeRuneInString(id) |
| 389 | return unicode.IsUpper(r) |
| 390 | } |