| Abhay Kumar | a2ae599 | 2025-11-10 14:02:24 +0000 | [diff] [blame^] | 1 | // Copyright 2014-2022 Google Inc. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | //go:build go1.18 |
| 16 | // +build go1.18 |
| 17 | |
| 18 | // In Go 1.18 and beyond, a BTreeG generic is created, and BTree is a specific |
| 19 | // instantiation of that generic for the Item interface, with a backwards- |
| 20 | // compatible API. Before go1.18, generics are not supported, |
| 21 | // and BTree is just an implementation based around the Item interface. |
| 22 | |
| 23 | // Package btree implements in-memory B-Trees of arbitrary degree. |
| 24 | // |
| 25 | // btree implements an in-memory B-Tree for use as an ordered data structure. |
| 26 | // It is not meant for persistent storage solutions. |
| 27 | // |
| 28 | // It has a flatter structure than an equivalent red-black or other binary tree, |
| 29 | // which in some cases yields better memory usage and/or performance. |
| 30 | // See some discussion on the matter here: |
| 31 | // http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html |
| 32 | // Note, though, that this project is in no way related to the C++ B-Tree |
| 33 | // implementation written about there. |
| 34 | // |
| 35 | // Within this tree, each node contains a slice of items and a (possibly nil) |
| 36 | // slice of children. For basic numeric values or raw structs, this can cause |
| 37 | // efficiency differences when compared to equivalent C++ template code that |
| 38 | // stores values in arrays within the node: |
| 39 | // * Due to the overhead of storing values as interfaces (each |
| 40 | // value needs to be stored as the value itself, then 2 words for the |
| 41 | // interface pointing to that value and its type), resulting in higher |
| 42 | // memory use. |
| 43 | // * Since interfaces can point to values anywhere in memory, values are |
| 44 | // most likely not stored in contiguous blocks, resulting in a higher |
| 45 | // number of cache misses. |
| 46 | // These issues don't tend to matter, though, when working with strings or other |
| 47 | // heap-allocated structures, since C++-equivalent structures also must store |
| 48 | // pointers and also distribute their values across the heap. |
| 49 | // |
| 50 | // This implementation is designed to be a drop-in replacement to gollrb.LLRB |
| 51 | // trees, (http://github.com/petar/gollrb), an excellent and probably the most |
| 52 | // widely used ordered tree implementation in the Go ecosystem currently. |
| 53 | // Its functions, therefore, exactly mirror those of |
| 54 | // llrb.LLRB where possible. Unlike gollrb, though, we currently don't |
| 55 | // support storing multiple equivalent values. |
| 56 | // |
| 57 | // There are two implementations; those suffixed with 'G' are generics, usable |
| 58 | // for any type, and require a passed-in "less" function to define their ordering. |
| 59 | // Those without this prefix are specific to the 'Item' interface, and use |
| 60 | // its 'Less' function for ordering. |
| 61 | package btree |
| 62 | |
| 63 | import ( |
| 64 | "fmt" |
| 65 | "io" |
| 66 | "sort" |
| 67 | "strings" |
| 68 | "sync" |
| 69 | ) |
| 70 | |
| 71 | // Item represents a single object in the tree. |
| 72 | type Item interface { |
| 73 | // Less tests whether the current item is less than the given argument. |
| 74 | // |
| 75 | // This must provide a strict weak ordering. |
| 76 | // If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only |
| 77 | // hold one of either a or b in the tree). |
| 78 | Less(than Item) bool |
| 79 | } |
| 80 | |
| 81 | const ( |
| 82 | DefaultFreeListSize = 32 |
| 83 | ) |
| 84 | |
| 85 | // FreeListG represents a free list of btree nodes. By default each |
| 86 | // BTree has its own FreeList, but multiple BTrees can share the same |
| 87 | // FreeList, in particular when they're created with Clone. |
| 88 | // Two Btrees using the same freelist are safe for concurrent write access. |
| 89 | type FreeListG[T any] struct { |
| 90 | mu sync.Mutex |
| 91 | freelist []*node[T] |
| 92 | } |
| 93 | |
| 94 | // NewFreeListG creates a new free list. |
| 95 | // size is the maximum size of the returned free list. |
| 96 | func NewFreeListG[T any](size int) *FreeListG[T] { |
| 97 | return &FreeListG[T]{freelist: make([]*node[T], 0, size)} |
| 98 | } |
| 99 | |
| 100 | func (f *FreeListG[T]) newNode() (n *node[T]) { |
| 101 | f.mu.Lock() |
| 102 | index := len(f.freelist) - 1 |
| 103 | if index < 0 { |
| 104 | f.mu.Unlock() |
| 105 | return new(node[T]) |
| 106 | } |
| 107 | n = f.freelist[index] |
| 108 | f.freelist[index] = nil |
| 109 | f.freelist = f.freelist[:index] |
| 110 | f.mu.Unlock() |
| 111 | return |
| 112 | } |
| 113 | |
| 114 | func (f *FreeListG[T]) freeNode(n *node[T]) (out bool) { |
| 115 | f.mu.Lock() |
| 116 | if len(f.freelist) < cap(f.freelist) { |
| 117 | f.freelist = append(f.freelist, n) |
| 118 | out = true |
| 119 | } |
| 120 | f.mu.Unlock() |
| 121 | return |
| 122 | } |
| 123 | |
| 124 | // ItemIteratorG allows callers of {A/De}scend* to iterate in-order over portions of |
| 125 | // the tree. When this function returns false, iteration will stop and the |
| 126 | // associated Ascend* function will immediately return. |
| 127 | type ItemIteratorG[T any] func(item T) bool |
| 128 | |
| 129 | // Ordered represents the set of types for which the '<' operator work. |
| 130 | type Ordered interface { |
| 131 | ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~float32 | ~float64 | ~string |
| 132 | } |
| 133 | |
| 134 | // Less[T] returns a default LessFunc that uses the '<' operator for types that support it. |
| 135 | func Less[T Ordered]() LessFunc[T] { |
| 136 | return func(a, b T) bool { return a < b } |
| 137 | } |
| 138 | |
| 139 | // NewOrderedG creates a new B-Tree for ordered types. |
| 140 | func NewOrderedG[T Ordered](degree int) *BTreeG[T] { |
| 141 | return NewG[T](degree, Less[T]()) |
| 142 | } |
| 143 | |
| 144 | // NewG creates a new B-Tree with the given degree. |
| 145 | // |
| 146 | // NewG(2), for example, will create a 2-3-4 tree (each node contains 1-3 items |
| 147 | // and 2-4 children). |
| 148 | // |
| 149 | // The passed-in LessFunc determines how objects of type T are ordered. |
| 150 | func NewG[T any](degree int, less LessFunc[T]) *BTreeG[T] { |
| 151 | return NewWithFreeListG(degree, less, NewFreeListG[T](DefaultFreeListSize)) |
| 152 | } |
| 153 | |
| 154 | // NewWithFreeListG creates a new B-Tree that uses the given node free list. |
| 155 | func NewWithFreeListG[T any](degree int, less LessFunc[T], f *FreeListG[T]) *BTreeG[T] { |
| 156 | if degree <= 1 { |
| 157 | panic("bad degree") |
| 158 | } |
| 159 | return &BTreeG[T]{ |
| 160 | degree: degree, |
| 161 | cow: ©OnWriteContext[T]{freelist: f, less: less}, |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | // items stores items in a node. |
| 166 | type items[T any] []T |
| 167 | |
| 168 | // insertAt inserts a value into the given index, pushing all subsequent values |
| 169 | // forward. |
| 170 | func (s *items[T]) insertAt(index int, item T) { |
| 171 | var zero T |
| 172 | *s = append(*s, zero) |
| 173 | if index < len(*s) { |
| 174 | copy((*s)[index+1:], (*s)[index:]) |
| 175 | } |
| 176 | (*s)[index] = item |
| 177 | } |
| 178 | |
| 179 | // removeAt removes a value at a given index, pulling all subsequent values |
| 180 | // back. |
| 181 | func (s *items[T]) removeAt(index int) T { |
| 182 | item := (*s)[index] |
| 183 | copy((*s)[index:], (*s)[index+1:]) |
| 184 | var zero T |
| 185 | (*s)[len(*s)-1] = zero |
| 186 | *s = (*s)[:len(*s)-1] |
| 187 | return item |
| 188 | } |
| 189 | |
| 190 | // pop removes and returns the last element in the list. |
| 191 | func (s *items[T]) pop() (out T) { |
| 192 | index := len(*s) - 1 |
| 193 | out = (*s)[index] |
| 194 | var zero T |
| 195 | (*s)[index] = zero |
| 196 | *s = (*s)[:index] |
| 197 | return |
| 198 | } |
| 199 | |
| 200 | // truncate truncates this instance at index so that it contains only the |
| 201 | // first index items. index must be less than or equal to length. |
| 202 | func (s *items[T]) truncate(index int) { |
| 203 | var toClear items[T] |
| 204 | *s, toClear = (*s)[:index], (*s)[index:] |
| 205 | var zero T |
| 206 | for i := 0; i < len(toClear); i++ { |
| 207 | toClear[i] = zero |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | // find returns the index where the given item should be inserted into this |
| 212 | // list. 'found' is true if the item already exists in the list at the given |
| 213 | // index. |
| 214 | func (s items[T]) find(item T, less func(T, T) bool) (index int, found bool) { |
| 215 | i := sort.Search(len(s), func(i int) bool { |
| 216 | return less(item, s[i]) |
| 217 | }) |
| 218 | if i > 0 && !less(s[i-1], item) { |
| 219 | return i - 1, true |
| 220 | } |
| 221 | return i, false |
| 222 | } |
| 223 | |
| 224 | // node is an internal node in a tree. |
| 225 | // |
| 226 | // It must at all times maintain the invariant that either |
| 227 | // * len(children) == 0, len(items) unconstrained |
| 228 | // * len(children) == len(items) + 1 |
| 229 | type node[T any] struct { |
| 230 | items items[T] |
| 231 | children items[*node[T]] |
| 232 | cow *copyOnWriteContext[T] |
| 233 | } |
| 234 | |
| 235 | func (n *node[T]) mutableFor(cow *copyOnWriteContext[T]) *node[T] { |
| 236 | if n.cow == cow { |
| 237 | return n |
| 238 | } |
| 239 | out := cow.newNode() |
| 240 | if cap(out.items) >= len(n.items) { |
| 241 | out.items = out.items[:len(n.items)] |
| 242 | } else { |
| 243 | out.items = make(items[T], len(n.items), cap(n.items)) |
| 244 | } |
| 245 | copy(out.items, n.items) |
| 246 | // Copy children |
| 247 | if cap(out.children) >= len(n.children) { |
| 248 | out.children = out.children[:len(n.children)] |
| 249 | } else { |
| 250 | out.children = make(items[*node[T]], len(n.children), cap(n.children)) |
| 251 | } |
| 252 | copy(out.children, n.children) |
| 253 | return out |
| 254 | } |
| 255 | |
| 256 | func (n *node[T]) mutableChild(i int) *node[T] { |
| 257 | c := n.children[i].mutableFor(n.cow) |
| 258 | n.children[i] = c |
| 259 | return c |
| 260 | } |
| 261 | |
| 262 | // split splits the given node at the given index. The current node shrinks, |
| 263 | // and this function returns the item that existed at that index and a new node |
| 264 | // containing all items/children after it. |
| 265 | func (n *node[T]) split(i int) (T, *node[T]) { |
| 266 | item := n.items[i] |
| 267 | next := n.cow.newNode() |
| 268 | next.items = append(next.items, n.items[i+1:]...) |
| 269 | n.items.truncate(i) |
| 270 | if len(n.children) > 0 { |
| 271 | next.children = append(next.children, n.children[i+1:]...) |
| 272 | n.children.truncate(i + 1) |
| 273 | } |
| 274 | return item, next |
| 275 | } |
| 276 | |
| 277 | // maybeSplitChild checks if a child should be split, and if so splits it. |
| 278 | // Returns whether or not a split occurred. |
| 279 | func (n *node[T]) maybeSplitChild(i, maxItems int) bool { |
| 280 | if len(n.children[i].items) < maxItems { |
| 281 | return false |
| 282 | } |
| 283 | first := n.mutableChild(i) |
| 284 | item, second := first.split(maxItems / 2) |
| 285 | n.items.insertAt(i, item) |
| 286 | n.children.insertAt(i+1, second) |
| 287 | return true |
| 288 | } |
| 289 | |
| 290 | // insert inserts an item into the subtree rooted at this node, making sure |
| 291 | // no nodes in the subtree exceed maxItems items. Should an equivalent item be |
| 292 | // be found/replaced by insert, it will be returned. |
| 293 | func (n *node[T]) insert(item T, maxItems int) (_ T, _ bool) { |
| 294 | i, found := n.items.find(item, n.cow.less) |
| 295 | if found { |
| 296 | out := n.items[i] |
| 297 | n.items[i] = item |
| 298 | return out, true |
| 299 | } |
| 300 | if len(n.children) == 0 { |
| 301 | n.items.insertAt(i, item) |
| 302 | return |
| 303 | } |
| 304 | if n.maybeSplitChild(i, maxItems) { |
| 305 | inTree := n.items[i] |
| 306 | switch { |
| 307 | case n.cow.less(item, inTree): |
| 308 | // no change, we want first split node |
| 309 | case n.cow.less(inTree, item): |
| 310 | i++ // we want second split node |
| 311 | default: |
| 312 | out := n.items[i] |
| 313 | n.items[i] = item |
| 314 | return out, true |
| 315 | } |
| 316 | } |
| 317 | return n.mutableChild(i).insert(item, maxItems) |
| 318 | } |
| 319 | |
| 320 | // get finds the given key in the subtree and returns it. |
| 321 | func (n *node[T]) get(key T) (_ T, _ bool) { |
| 322 | i, found := n.items.find(key, n.cow.less) |
| 323 | if found { |
| 324 | return n.items[i], true |
| 325 | } else if len(n.children) > 0 { |
| 326 | return n.children[i].get(key) |
| 327 | } |
| 328 | return |
| 329 | } |
| 330 | |
| 331 | // min returns the first item in the subtree. |
| 332 | func min[T any](n *node[T]) (_ T, found bool) { |
| 333 | if n == nil { |
| 334 | return |
| 335 | } |
| 336 | for len(n.children) > 0 { |
| 337 | n = n.children[0] |
| 338 | } |
| 339 | if len(n.items) == 0 { |
| 340 | return |
| 341 | } |
| 342 | return n.items[0], true |
| 343 | } |
| 344 | |
| 345 | // max returns the last item in the subtree. |
| 346 | func max[T any](n *node[T]) (_ T, found bool) { |
| 347 | if n == nil { |
| 348 | return |
| 349 | } |
| 350 | for len(n.children) > 0 { |
| 351 | n = n.children[len(n.children)-1] |
| 352 | } |
| 353 | if len(n.items) == 0 { |
| 354 | return |
| 355 | } |
| 356 | return n.items[len(n.items)-1], true |
| 357 | } |
| 358 | |
| 359 | // toRemove details what item to remove in a node.remove call. |
| 360 | type toRemove int |
| 361 | |
| 362 | const ( |
| 363 | removeItem toRemove = iota // removes the given item |
| 364 | removeMin // removes smallest item in the subtree |
| 365 | removeMax // removes largest item in the subtree |
| 366 | ) |
| 367 | |
| 368 | // remove removes an item from the subtree rooted at this node. |
| 369 | func (n *node[T]) remove(item T, minItems int, typ toRemove) (_ T, _ bool) { |
| 370 | var i int |
| 371 | var found bool |
| 372 | switch typ { |
| 373 | case removeMax: |
| 374 | if len(n.children) == 0 { |
| 375 | return n.items.pop(), true |
| 376 | } |
| 377 | i = len(n.items) |
| 378 | case removeMin: |
| 379 | if len(n.children) == 0 { |
| 380 | return n.items.removeAt(0), true |
| 381 | } |
| 382 | i = 0 |
| 383 | case removeItem: |
| 384 | i, found = n.items.find(item, n.cow.less) |
| 385 | if len(n.children) == 0 { |
| 386 | if found { |
| 387 | return n.items.removeAt(i), true |
| 388 | } |
| 389 | return |
| 390 | } |
| 391 | default: |
| 392 | panic("invalid type") |
| 393 | } |
| 394 | // If we get to here, we have children. |
| 395 | if len(n.children[i].items) <= minItems { |
| 396 | return n.growChildAndRemove(i, item, minItems, typ) |
| 397 | } |
| 398 | child := n.mutableChild(i) |
| 399 | // Either we had enough items to begin with, or we've done some |
| 400 | // merging/stealing, because we've got enough now and we're ready to return |
| 401 | // stuff. |
| 402 | if found { |
| 403 | // The item exists at index 'i', and the child we've selected can give us a |
| 404 | // predecessor, since if we've gotten here it's got > minItems items in it. |
| 405 | out := n.items[i] |
| 406 | // We use our special-case 'remove' call with typ=maxItem to pull the |
| 407 | // predecessor of item i (the rightmost leaf of our immediate left child) |
| 408 | // and set it into where we pulled the item from. |
| 409 | var zero T |
| 410 | n.items[i], _ = child.remove(zero, minItems, removeMax) |
| 411 | return out, true |
| 412 | } |
| 413 | // Final recursive call. Once we're here, we know that the item isn't in this |
| 414 | // node and that the child is big enough to remove from. |
| 415 | return child.remove(item, minItems, typ) |
| 416 | } |
| 417 | |
| 418 | // growChildAndRemove grows child 'i' to make sure it's possible to remove an |
| 419 | // item from it while keeping it at minItems, then calls remove to actually |
| 420 | // remove it. |
| 421 | // |
| 422 | // Most documentation says we have to do two sets of special casing: |
| 423 | // 1) item is in this node |
| 424 | // 2) item is in child |
| 425 | // In both cases, we need to handle the two subcases: |
| 426 | // A) node has enough values that it can spare one |
| 427 | // B) node doesn't have enough values |
| 428 | // For the latter, we have to check: |
| 429 | // a) left sibling has node to spare |
| 430 | // b) right sibling has node to spare |
| 431 | // c) we must merge |
| 432 | // To simplify our code here, we handle cases #1 and #2 the same: |
| 433 | // If a node doesn't have enough items, we make sure it does (using a,b,c). |
| 434 | // We then simply redo our remove call, and the second time (regardless of |
| 435 | // whether we're in case 1 or 2), we'll have enough items and can guarantee |
| 436 | // that we hit case A. |
| 437 | func (n *node[T]) growChildAndRemove(i int, item T, minItems int, typ toRemove) (T, bool) { |
| 438 | if i > 0 && len(n.children[i-1].items) > minItems { |
| 439 | // Steal from left child |
| 440 | child := n.mutableChild(i) |
| 441 | stealFrom := n.mutableChild(i - 1) |
| 442 | stolenItem := stealFrom.items.pop() |
| 443 | child.items.insertAt(0, n.items[i-1]) |
| 444 | n.items[i-1] = stolenItem |
| 445 | if len(stealFrom.children) > 0 { |
| 446 | child.children.insertAt(0, stealFrom.children.pop()) |
| 447 | } |
| 448 | } else if i < len(n.items) && len(n.children[i+1].items) > minItems { |
| 449 | // steal from right child |
| 450 | child := n.mutableChild(i) |
| 451 | stealFrom := n.mutableChild(i + 1) |
| 452 | stolenItem := stealFrom.items.removeAt(0) |
| 453 | child.items = append(child.items, n.items[i]) |
| 454 | n.items[i] = stolenItem |
| 455 | if len(stealFrom.children) > 0 { |
| 456 | child.children = append(child.children, stealFrom.children.removeAt(0)) |
| 457 | } |
| 458 | } else { |
| 459 | if i >= len(n.items) { |
| 460 | i-- |
| 461 | } |
| 462 | child := n.mutableChild(i) |
| 463 | // merge with right child |
| 464 | mergeItem := n.items.removeAt(i) |
| 465 | mergeChild := n.children.removeAt(i + 1) |
| 466 | child.items = append(child.items, mergeItem) |
| 467 | child.items = append(child.items, mergeChild.items...) |
| 468 | child.children = append(child.children, mergeChild.children...) |
| 469 | n.cow.freeNode(mergeChild) |
| 470 | } |
| 471 | return n.remove(item, minItems, typ) |
| 472 | } |
| 473 | |
| 474 | type direction int |
| 475 | |
| 476 | const ( |
| 477 | descend = direction(-1) |
| 478 | ascend = direction(+1) |
| 479 | ) |
| 480 | |
| 481 | type optionalItem[T any] struct { |
| 482 | item T |
| 483 | valid bool |
| 484 | } |
| 485 | |
| 486 | func optional[T any](item T) optionalItem[T] { |
| 487 | return optionalItem[T]{item: item, valid: true} |
| 488 | } |
| 489 | func empty[T any]() optionalItem[T] { |
| 490 | return optionalItem[T]{} |
| 491 | } |
| 492 | |
| 493 | // iterate provides a simple method for iterating over elements in the tree. |
| 494 | // |
| 495 | // When ascending, the 'start' should be less than 'stop' and when descending, |
| 496 | // the 'start' should be greater than 'stop'. Setting 'includeStart' to true |
| 497 | // will force the iterator to include the first item when it equals 'start', |
| 498 | // thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a |
| 499 | // "greaterThan" or "lessThan" queries. |
| 500 | func (n *node[T]) iterate(dir direction, start, stop optionalItem[T], includeStart bool, hit bool, iter ItemIteratorG[T]) (bool, bool) { |
| 501 | var ok, found bool |
| 502 | var index int |
| 503 | switch dir { |
| 504 | case ascend: |
| 505 | if start.valid { |
| 506 | index, _ = n.items.find(start.item, n.cow.less) |
| 507 | } |
| 508 | for i := index; i < len(n.items); i++ { |
| 509 | if len(n.children) > 0 { |
| 510 | if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok { |
| 511 | return hit, false |
| 512 | } |
| 513 | } |
| 514 | if !includeStart && !hit && start.valid && !n.cow.less(start.item, n.items[i]) { |
| 515 | hit = true |
| 516 | continue |
| 517 | } |
| 518 | hit = true |
| 519 | if stop.valid && !n.cow.less(n.items[i], stop.item) { |
| 520 | return hit, false |
| 521 | } |
| 522 | if !iter(n.items[i]) { |
| 523 | return hit, false |
| 524 | } |
| 525 | } |
| 526 | if len(n.children) > 0 { |
| 527 | if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok { |
| 528 | return hit, false |
| 529 | } |
| 530 | } |
| 531 | case descend: |
| 532 | if start.valid { |
| 533 | index, found = n.items.find(start.item, n.cow.less) |
| 534 | if !found { |
| 535 | index = index - 1 |
| 536 | } |
| 537 | } else { |
| 538 | index = len(n.items) - 1 |
| 539 | } |
| 540 | for i := index; i >= 0; i-- { |
| 541 | if start.valid && !n.cow.less(n.items[i], start.item) { |
| 542 | if !includeStart || hit || n.cow.less(start.item, n.items[i]) { |
| 543 | continue |
| 544 | } |
| 545 | } |
| 546 | if len(n.children) > 0 { |
| 547 | if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok { |
| 548 | return hit, false |
| 549 | } |
| 550 | } |
| 551 | if stop.valid && !n.cow.less(stop.item, n.items[i]) { |
| 552 | return hit, false // continue |
| 553 | } |
| 554 | hit = true |
| 555 | if !iter(n.items[i]) { |
| 556 | return hit, false |
| 557 | } |
| 558 | } |
| 559 | if len(n.children) > 0 { |
| 560 | if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok { |
| 561 | return hit, false |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | return hit, true |
| 566 | } |
| 567 | |
| 568 | // print is used for testing/debugging purposes. |
| 569 | func (n *node[T]) print(w io.Writer, level int) { |
| 570 | fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items) |
| 571 | for _, c := range n.children { |
| 572 | c.print(w, level+1) |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | // BTreeG is a generic implementation of a B-Tree. |
| 577 | // |
| 578 | // BTreeG stores items of type T in an ordered structure, allowing easy insertion, |
| 579 | // removal, and iteration. |
| 580 | // |
| 581 | // Write operations are not safe for concurrent mutation by multiple |
| 582 | // goroutines, but Read operations are. |
| 583 | type BTreeG[T any] struct { |
| 584 | degree int |
| 585 | length int |
| 586 | root *node[T] |
| 587 | cow *copyOnWriteContext[T] |
| 588 | } |
| 589 | |
| 590 | // LessFunc[T] determines how to order a type 'T'. It should implement a strict |
| 591 | // ordering, and should return true if within that ordering, 'a' < 'b'. |
| 592 | type LessFunc[T any] func(a, b T) bool |
| 593 | |
| 594 | // copyOnWriteContext pointers determine node ownership... a tree with a write |
| 595 | // context equivalent to a node's write context is allowed to modify that node. |
| 596 | // A tree whose write context does not match a node's is not allowed to modify |
| 597 | // it, and must create a new, writable copy (IE: it's a Clone). |
| 598 | // |
| 599 | // When doing any write operation, we maintain the invariant that the current |
| 600 | // node's context is equal to the context of the tree that requested the write. |
| 601 | // We do this by, before we descend into any node, creating a copy with the |
| 602 | // correct context if the contexts don't match. |
| 603 | // |
| 604 | // Since the node we're currently visiting on any write has the requesting |
| 605 | // tree's context, that node is modifiable in place. Children of that node may |
| 606 | // not share context, but before we descend into them, we'll make a mutable |
| 607 | // copy. |
| 608 | type copyOnWriteContext[T any] struct { |
| 609 | freelist *FreeListG[T] |
| 610 | less LessFunc[T] |
| 611 | } |
| 612 | |
| 613 | // Clone clones the btree, lazily. Clone should not be called concurrently, |
| 614 | // but the original tree (t) and the new tree (t2) can be used concurrently |
| 615 | // once the Clone call completes. |
| 616 | // |
| 617 | // The internal tree structure of b is marked read-only and shared between t and |
| 618 | // t2. Writes to both t and t2 use copy-on-write logic, creating new nodes |
| 619 | // whenever one of b's original nodes would have been modified. Read operations |
| 620 | // should have no performance degredation. Write operations for both t and t2 |
| 621 | // will initially experience minor slow-downs caused by additional allocs and |
| 622 | // copies due to the aforementioned copy-on-write logic, but should converge to |
| 623 | // the original performance characteristics of the original tree. |
| 624 | func (t *BTreeG[T]) Clone() (t2 *BTreeG[T]) { |
| 625 | // Create two entirely new copy-on-write contexts. |
| 626 | // This operation effectively creates three trees: |
| 627 | // the original, shared nodes (old b.cow) |
| 628 | // the new b.cow nodes |
| 629 | // the new out.cow nodes |
| 630 | cow1, cow2 := *t.cow, *t.cow |
| 631 | out := *t |
| 632 | t.cow = &cow1 |
| 633 | out.cow = &cow2 |
| 634 | return &out |
| 635 | } |
| 636 | |
| 637 | // maxItems returns the max number of items to allow per node. |
| 638 | func (t *BTreeG[T]) maxItems() int { |
| 639 | return t.degree*2 - 1 |
| 640 | } |
| 641 | |
| 642 | // minItems returns the min number of items to allow per node (ignored for the |
| 643 | // root node). |
| 644 | func (t *BTreeG[T]) minItems() int { |
| 645 | return t.degree - 1 |
| 646 | } |
| 647 | |
| 648 | func (c *copyOnWriteContext[T]) newNode() (n *node[T]) { |
| 649 | n = c.freelist.newNode() |
| 650 | n.cow = c |
| 651 | return |
| 652 | } |
| 653 | |
| 654 | type freeType int |
| 655 | |
| 656 | const ( |
| 657 | ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist) |
| 658 | ftStored // node was stored in the freelist for later use |
| 659 | ftNotOwned // node was ignored by COW, since it's owned by another one |
| 660 | ) |
| 661 | |
| 662 | // freeNode frees a node within a given COW context, if it's owned by that |
| 663 | // context. It returns what happened to the node (see freeType const |
| 664 | // documentation). |
| 665 | func (c *copyOnWriteContext[T]) freeNode(n *node[T]) freeType { |
| 666 | if n.cow == c { |
| 667 | // clear to allow GC |
| 668 | n.items.truncate(0) |
| 669 | n.children.truncate(0) |
| 670 | n.cow = nil |
| 671 | if c.freelist.freeNode(n) { |
| 672 | return ftStored |
| 673 | } else { |
| 674 | return ftFreelistFull |
| 675 | } |
| 676 | } else { |
| 677 | return ftNotOwned |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | // ReplaceOrInsert adds the given item to the tree. If an item in the tree |
| 682 | // already equals the given one, it is removed from the tree and returned, |
| 683 | // and the second return value is true. Otherwise, (zeroValue, false) |
| 684 | // |
| 685 | // nil cannot be added to the tree (will panic). |
| 686 | func (t *BTreeG[T]) ReplaceOrInsert(item T) (_ T, _ bool) { |
| 687 | if t.root == nil { |
| 688 | t.root = t.cow.newNode() |
| 689 | t.root.items = append(t.root.items, item) |
| 690 | t.length++ |
| 691 | return |
| 692 | } else { |
| 693 | t.root = t.root.mutableFor(t.cow) |
| 694 | if len(t.root.items) >= t.maxItems() { |
| 695 | item2, second := t.root.split(t.maxItems() / 2) |
| 696 | oldroot := t.root |
| 697 | t.root = t.cow.newNode() |
| 698 | t.root.items = append(t.root.items, item2) |
| 699 | t.root.children = append(t.root.children, oldroot, second) |
| 700 | } |
| 701 | } |
| 702 | out, outb := t.root.insert(item, t.maxItems()) |
| 703 | if !outb { |
| 704 | t.length++ |
| 705 | } |
| 706 | return out, outb |
| 707 | } |
| 708 | |
| 709 | // Delete removes an item equal to the passed in item from the tree, returning |
| 710 | // it. If no such item exists, returns (zeroValue, false). |
| 711 | func (t *BTreeG[T]) Delete(item T) (T, bool) { |
| 712 | return t.deleteItem(item, removeItem) |
| 713 | } |
| 714 | |
| 715 | // DeleteMin removes the smallest item in the tree and returns it. |
| 716 | // If no such item exists, returns (zeroValue, false). |
| 717 | func (t *BTreeG[T]) DeleteMin() (T, bool) { |
| 718 | var zero T |
| 719 | return t.deleteItem(zero, removeMin) |
| 720 | } |
| 721 | |
| 722 | // DeleteMax removes the largest item in the tree and returns it. |
| 723 | // If no such item exists, returns (zeroValue, false). |
| 724 | func (t *BTreeG[T]) DeleteMax() (T, bool) { |
| 725 | var zero T |
| 726 | return t.deleteItem(zero, removeMax) |
| 727 | } |
| 728 | |
| 729 | func (t *BTreeG[T]) deleteItem(item T, typ toRemove) (_ T, _ bool) { |
| 730 | if t.root == nil || len(t.root.items) == 0 { |
| 731 | return |
| 732 | } |
| 733 | t.root = t.root.mutableFor(t.cow) |
| 734 | out, outb := t.root.remove(item, t.minItems(), typ) |
| 735 | if len(t.root.items) == 0 && len(t.root.children) > 0 { |
| 736 | oldroot := t.root |
| 737 | t.root = t.root.children[0] |
| 738 | t.cow.freeNode(oldroot) |
| 739 | } |
| 740 | if outb { |
| 741 | t.length-- |
| 742 | } |
| 743 | return out, outb |
| 744 | } |
| 745 | |
| 746 | // AscendRange calls the iterator for every value in the tree within the range |
| 747 | // [greaterOrEqual, lessThan), until iterator returns false. |
| 748 | func (t *BTreeG[T]) AscendRange(greaterOrEqual, lessThan T, iterator ItemIteratorG[T]) { |
| 749 | if t.root == nil { |
| 750 | return |
| 751 | } |
| 752 | t.root.iterate(ascend, optional[T](greaterOrEqual), optional[T](lessThan), true, false, iterator) |
| 753 | } |
| 754 | |
| 755 | // AscendLessThan calls the iterator for every value in the tree within the range |
| 756 | // [first, pivot), until iterator returns false. |
| 757 | func (t *BTreeG[T]) AscendLessThan(pivot T, iterator ItemIteratorG[T]) { |
| 758 | if t.root == nil { |
| 759 | return |
| 760 | } |
| 761 | t.root.iterate(ascend, empty[T](), optional(pivot), false, false, iterator) |
| 762 | } |
| 763 | |
| 764 | // AscendGreaterOrEqual calls the iterator for every value in the tree within |
| 765 | // the range [pivot, last], until iterator returns false. |
| 766 | func (t *BTreeG[T]) AscendGreaterOrEqual(pivot T, iterator ItemIteratorG[T]) { |
| 767 | if t.root == nil { |
| 768 | return |
| 769 | } |
| 770 | t.root.iterate(ascend, optional[T](pivot), empty[T](), true, false, iterator) |
| 771 | } |
| 772 | |
| 773 | // Ascend calls the iterator for every value in the tree within the range |
| 774 | // [first, last], until iterator returns false. |
| 775 | func (t *BTreeG[T]) Ascend(iterator ItemIteratorG[T]) { |
| 776 | if t.root == nil { |
| 777 | return |
| 778 | } |
| 779 | t.root.iterate(ascend, empty[T](), empty[T](), false, false, iterator) |
| 780 | } |
| 781 | |
| 782 | // DescendRange calls the iterator for every value in the tree within the range |
| 783 | // [lessOrEqual, greaterThan), until iterator returns false. |
| 784 | func (t *BTreeG[T]) DescendRange(lessOrEqual, greaterThan T, iterator ItemIteratorG[T]) { |
| 785 | if t.root == nil { |
| 786 | return |
| 787 | } |
| 788 | t.root.iterate(descend, optional[T](lessOrEqual), optional[T](greaterThan), true, false, iterator) |
| 789 | } |
| 790 | |
| 791 | // DescendLessOrEqual calls the iterator for every value in the tree within the range |
| 792 | // [pivot, first], until iterator returns false. |
| 793 | func (t *BTreeG[T]) DescendLessOrEqual(pivot T, iterator ItemIteratorG[T]) { |
| 794 | if t.root == nil { |
| 795 | return |
| 796 | } |
| 797 | t.root.iterate(descend, optional[T](pivot), empty[T](), true, false, iterator) |
| 798 | } |
| 799 | |
| 800 | // DescendGreaterThan calls the iterator for every value in the tree within |
| 801 | // the range [last, pivot), until iterator returns false. |
| 802 | func (t *BTreeG[T]) DescendGreaterThan(pivot T, iterator ItemIteratorG[T]) { |
| 803 | if t.root == nil { |
| 804 | return |
| 805 | } |
| 806 | t.root.iterate(descend, empty[T](), optional[T](pivot), false, false, iterator) |
| 807 | } |
| 808 | |
| 809 | // Descend calls the iterator for every value in the tree within the range |
| 810 | // [last, first], until iterator returns false. |
| 811 | func (t *BTreeG[T]) Descend(iterator ItemIteratorG[T]) { |
| 812 | if t.root == nil { |
| 813 | return |
| 814 | } |
| 815 | t.root.iterate(descend, empty[T](), empty[T](), false, false, iterator) |
| 816 | } |
| 817 | |
| 818 | // Get looks for the key item in the tree, returning it. It returns |
| 819 | // (zeroValue, false) if unable to find that item. |
| 820 | func (t *BTreeG[T]) Get(key T) (_ T, _ bool) { |
| 821 | if t.root == nil { |
| 822 | return |
| 823 | } |
| 824 | return t.root.get(key) |
| 825 | } |
| 826 | |
| 827 | // Min returns the smallest item in the tree, or (zeroValue, false) if the tree is empty. |
| 828 | func (t *BTreeG[T]) Min() (_ T, _ bool) { |
| 829 | return min(t.root) |
| 830 | } |
| 831 | |
| 832 | // Max returns the largest item in the tree, or (zeroValue, false) if the tree is empty. |
| 833 | func (t *BTreeG[T]) Max() (_ T, _ bool) { |
| 834 | return max(t.root) |
| 835 | } |
| 836 | |
| 837 | // Has returns true if the given key is in the tree. |
| 838 | func (t *BTreeG[T]) Has(key T) bool { |
| 839 | _, ok := t.Get(key) |
| 840 | return ok |
| 841 | } |
| 842 | |
| 843 | // Len returns the number of items currently in the tree. |
| 844 | func (t *BTreeG[T]) Len() int { |
| 845 | return t.length |
| 846 | } |
| 847 | |
| 848 | // Clear removes all items from the btree. If addNodesToFreelist is true, |
| 849 | // t's nodes are added to its freelist as part of this call, until the freelist |
| 850 | // is full. Otherwise, the root node is simply dereferenced and the subtree |
| 851 | // left to Go's normal GC processes. |
| 852 | // |
| 853 | // This can be much faster |
| 854 | // than calling Delete on all elements, because that requires finding/removing |
| 855 | // each element in the tree and updating the tree accordingly. It also is |
| 856 | // somewhat faster than creating a new tree to replace the old one, because |
| 857 | // nodes from the old tree are reclaimed into the freelist for use by the new |
| 858 | // one, instead of being lost to the garbage collector. |
| 859 | // |
| 860 | // This call takes: |
| 861 | // O(1): when addNodesToFreelist is false, this is a single operation. |
| 862 | // O(1): when the freelist is already full, it breaks out immediately |
| 863 | // O(freelist size): when the freelist is empty and the nodes are all owned |
| 864 | // by this tree, nodes are added to the freelist until full. |
| 865 | // O(tree size): when all nodes are owned by another tree, all nodes are |
| 866 | // iterated over looking for nodes to add to the freelist, and due to |
| 867 | // ownership, none are. |
| 868 | func (t *BTreeG[T]) Clear(addNodesToFreelist bool) { |
| 869 | if t.root != nil && addNodesToFreelist { |
| 870 | t.root.reset(t.cow) |
| 871 | } |
| 872 | t.root, t.length = nil, 0 |
| 873 | } |
| 874 | |
| 875 | // reset returns a subtree to the freelist. It breaks out immediately if the |
| 876 | // freelist is full, since the only benefit of iterating is to fill that |
| 877 | // freelist up. Returns true if parent reset call should continue. |
| 878 | func (n *node[T]) reset(c *copyOnWriteContext[T]) bool { |
| 879 | for _, child := range n.children { |
| 880 | if !child.reset(c) { |
| 881 | return false |
| 882 | } |
| 883 | } |
| 884 | return c.freeNode(n) != ftFreelistFull |
| 885 | } |
| 886 | |
| 887 | // Int implements the Item interface for integers. |
| 888 | type Int int |
| 889 | |
| 890 | // Less returns true if int(a) < int(b). |
| 891 | func (a Int) Less(b Item) bool { |
| 892 | return a < b.(Int) |
| 893 | } |
| 894 | |
| 895 | // BTree is an implementation of a B-Tree. |
| 896 | // |
| 897 | // BTree stores Item instances in an ordered structure, allowing easy insertion, |
| 898 | // removal, and iteration. |
| 899 | // |
| 900 | // Write operations are not safe for concurrent mutation by multiple |
| 901 | // goroutines, but Read operations are. |
| 902 | type BTree BTreeG[Item] |
| 903 | |
| 904 | var itemLess LessFunc[Item] = func(a, b Item) bool { |
| 905 | return a.Less(b) |
| 906 | } |
| 907 | |
| 908 | // New creates a new B-Tree with the given degree. |
| 909 | // |
| 910 | // New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items |
| 911 | // and 2-4 children). |
| 912 | func New(degree int) *BTree { |
| 913 | return (*BTree)(NewG[Item](degree, itemLess)) |
| 914 | } |
| 915 | |
| 916 | // FreeList represents a free list of btree nodes. By default each |
| 917 | // BTree has its own FreeList, but multiple BTrees can share the same |
| 918 | // FreeList. |
| 919 | // Two Btrees using the same freelist are safe for concurrent write access. |
| 920 | type FreeList FreeListG[Item] |
| 921 | |
| 922 | // NewFreeList creates a new free list. |
| 923 | // size is the maximum size of the returned free list. |
| 924 | func NewFreeList(size int) *FreeList { |
| 925 | return (*FreeList)(NewFreeListG[Item](size)) |
| 926 | } |
| 927 | |
| 928 | // NewWithFreeList creates a new B-Tree that uses the given node free list. |
| 929 | func NewWithFreeList(degree int, f *FreeList) *BTree { |
| 930 | return (*BTree)(NewWithFreeListG[Item](degree, itemLess, (*FreeListG[Item])(f))) |
| 931 | } |
| 932 | |
| 933 | // ItemIterator allows callers of Ascend* to iterate in-order over portions of |
| 934 | // the tree. When this function returns false, iteration will stop and the |
| 935 | // associated Ascend* function will immediately return. |
| 936 | type ItemIterator ItemIteratorG[Item] |
| 937 | |
| 938 | // Clone clones the btree, lazily. Clone should not be called concurrently, |
| 939 | // but the original tree (t) and the new tree (t2) can be used concurrently |
| 940 | // once the Clone call completes. |
| 941 | // |
| 942 | // The internal tree structure of b is marked read-only and shared between t and |
| 943 | // t2. Writes to both t and t2 use copy-on-write logic, creating new nodes |
| 944 | // whenever one of b's original nodes would have been modified. Read operations |
| 945 | // should have no performance degredation. Write operations for both t and t2 |
| 946 | // will initially experience minor slow-downs caused by additional allocs and |
| 947 | // copies due to the aforementioned copy-on-write logic, but should converge to |
| 948 | // the original performance characteristics of the original tree. |
| 949 | func (t *BTree) Clone() (t2 *BTree) { |
| 950 | return (*BTree)((*BTreeG[Item])(t).Clone()) |
| 951 | } |
| 952 | |
| 953 | // Delete removes an item equal to the passed in item from the tree, returning |
| 954 | // it. If no such item exists, returns nil. |
| 955 | func (t *BTree) Delete(item Item) Item { |
| 956 | i, _ := (*BTreeG[Item])(t).Delete(item) |
| 957 | return i |
| 958 | } |
| 959 | |
| 960 | // DeleteMax removes the largest item in the tree and returns it. |
| 961 | // If no such item exists, returns nil. |
| 962 | func (t *BTree) DeleteMax() Item { |
| 963 | i, _ := (*BTreeG[Item])(t).DeleteMax() |
| 964 | return i |
| 965 | } |
| 966 | |
| 967 | // DeleteMin removes the smallest item in the tree and returns it. |
| 968 | // If no such item exists, returns nil. |
| 969 | func (t *BTree) DeleteMin() Item { |
| 970 | i, _ := (*BTreeG[Item])(t).DeleteMin() |
| 971 | return i |
| 972 | } |
| 973 | |
| 974 | // Get looks for the key item in the tree, returning it. It returns nil if |
| 975 | // unable to find that item. |
| 976 | func (t *BTree) Get(key Item) Item { |
| 977 | i, _ := (*BTreeG[Item])(t).Get(key) |
| 978 | return i |
| 979 | } |
| 980 | |
| 981 | // Max returns the largest item in the tree, or nil if the tree is empty. |
| 982 | func (t *BTree) Max() Item { |
| 983 | i, _ := (*BTreeG[Item])(t).Max() |
| 984 | return i |
| 985 | } |
| 986 | |
| 987 | // Min returns the smallest item in the tree, or nil if the tree is empty. |
| 988 | func (t *BTree) Min() Item { |
| 989 | i, _ := (*BTreeG[Item])(t).Min() |
| 990 | return i |
| 991 | } |
| 992 | |
| 993 | // Has returns true if the given key is in the tree. |
| 994 | func (t *BTree) Has(key Item) bool { |
| 995 | return (*BTreeG[Item])(t).Has(key) |
| 996 | } |
| 997 | |
| 998 | // ReplaceOrInsert adds the given item to the tree. If an item in the tree |
| 999 | // already equals the given one, it is removed from the tree and returned. |
| 1000 | // Otherwise, nil is returned. |
| 1001 | // |
| 1002 | // nil cannot be added to the tree (will panic). |
| 1003 | func (t *BTree) ReplaceOrInsert(item Item) Item { |
| 1004 | i, _ := (*BTreeG[Item])(t).ReplaceOrInsert(item) |
| 1005 | return i |
| 1006 | } |
| 1007 | |
| 1008 | // AscendRange calls the iterator for every value in the tree within the range |
| 1009 | // [greaterOrEqual, lessThan), until iterator returns false. |
| 1010 | func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) { |
| 1011 | (*BTreeG[Item])(t).AscendRange(greaterOrEqual, lessThan, (ItemIteratorG[Item])(iterator)) |
| 1012 | } |
| 1013 | |
| 1014 | // AscendLessThan calls the iterator for every value in the tree within the range |
| 1015 | // [first, pivot), until iterator returns false. |
| 1016 | func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) { |
| 1017 | (*BTreeG[Item])(t).AscendLessThan(pivot, (ItemIteratorG[Item])(iterator)) |
| 1018 | } |
| 1019 | |
| 1020 | // AscendGreaterOrEqual calls the iterator for every value in the tree within |
| 1021 | // the range [pivot, last], until iterator returns false. |
| 1022 | func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) { |
| 1023 | (*BTreeG[Item])(t).AscendGreaterOrEqual(pivot, (ItemIteratorG[Item])(iterator)) |
| 1024 | } |
| 1025 | |
| 1026 | // Ascend calls the iterator for every value in the tree within the range |
| 1027 | // [first, last], until iterator returns false. |
| 1028 | func (t *BTree) Ascend(iterator ItemIterator) { |
| 1029 | (*BTreeG[Item])(t).Ascend((ItemIteratorG[Item])(iterator)) |
| 1030 | } |
| 1031 | |
| 1032 | // DescendRange calls the iterator for every value in the tree within the range |
| 1033 | // [lessOrEqual, greaterThan), until iterator returns false. |
| 1034 | func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) { |
| 1035 | (*BTreeG[Item])(t).DescendRange(lessOrEqual, greaterThan, (ItemIteratorG[Item])(iterator)) |
| 1036 | } |
| 1037 | |
| 1038 | // DescendLessOrEqual calls the iterator for every value in the tree within the range |
| 1039 | // [pivot, first], until iterator returns false. |
| 1040 | func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) { |
| 1041 | (*BTreeG[Item])(t).DescendLessOrEqual(pivot, (ItemIteratorG[Item])(iterator)) |
| 1042 | } |
| 1043 | |
| 1044 | // DescendGreaterThan calls the iterator for every value in the tree within |
| 1045 | // the range [last, pivot), until iterator returns false. |
| 1046 | func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) { |
| 1047 | (*BTreeG[Item])(t).DescendGreaterThan(pivot, (ItemIteratorG[Item])(iterator)) |
| 1048 | } |
| 1049 | |
| 1050 | // Descend calls the iterator for every value in the tree within the range |
| 1051 | // [last, first], until iterator returns false. |
| 1052 | func (t *BTree) Descend(iterator ItemIterator) { |
| 1053 | (*BTreeG[Item])(t).Descend((ItemIteratorG[Item])(iterator)) |
| 1054 | } |
| 1055 | |
| 1056 | // Len returns the number of items currently in the tree. |
| 1057 | func (t *BTree) Len() int { |
| 1058 | return (*BTreeG[Item])(t).Len() |
| 1059 | } |
| 1060 | |
| 1061 | // Clear removes all items from the btree. If addNodesToFreelist is true, |
| 1062 | // t's nodes are added to its freelist as part of this call, until the freelist |
| 1063 | // is full. Otherwise, the root node is simply dereferenced and the subtree |
| 1064 | // left to Go's normal GC processes. |
| 1065 | // |
| 1066 | // This can be much faster |
| 1067 | // than calling Delete on all elements, because that requires finding/removing |
| 1068 | // each element in the tree and updating the tree accordingly. It also is |
| 1069 | // somewhat faster than creating a new tree to replace the old one, because |
| 1070 | // nodes from the old tree are reclaimed into the freelist for use by the new |
| 1071 | // one, instead of being lost to the garbage collector. |
| 1072 | // |
| 1073 | // This call takes: |
| 1074 | // O(1): when addNodesToFreelist is false, this is a single operation. |
| 1075 | // O(1): when the freelist is already full, it breaks out immediately |
| 1076 | // O(freelist size): when the freelist is empty and the nodes are all owned |
| 1077 | // by this tree, nodes are added to the freelist until full. |
| 1078 | // O(tree size): when all nodes are owned by another tree, all nodes are |
| 1079 | // iterated over looking for nodes to add to the freelist, and due to |
| 1080 | // ownership, none are. |
| 1081 | func (t *BTree) Clear(addNodesToFreelist bool) { |
| 1082 | (*BTreeG[Item])(t).Clear(addNodesToFreelist) |
| 1083 | } |