blob: 6f5184fef7d8e746f6008d2f1aa01697e455976f [file] [log] [blame]
khenaidooab1f7bd2019-11-14 14:00:27 -05001// Copyright 2014 Google Inc.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
Abhay Kumara2ae5992025-11-10 14:02:24 +000015//go:build !go1.18
16// +build !go1.18
17
khenaidooab1f7bd2019-11-14 14:00:27 -050018// Package btree implements in-memory B-Trees of arbitrary degree.
19//
20// btree implements an in-memory B-Tree for use as an ordered data structure.
21// It is not meant for persistent storage solutions.
22//
23// It has a flatter structure than an equivalent red-black or other binary tree,
24// which in some cases yields better memory usage and/or performance.
25// See some discussion on the matter here:
26// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
27// Note, though, that this project is in no way related to the C++ B-Tree
28// implementation written about there.
29//
30// Within this tree, each node contains a slice of items and a (possibly nil)
31// slice of children. For basic numeric values or raw structs, this can cause
32// efficiency differences when compared to equivalent C++ template code that
33// stores values in arrays within the node:
34// * Due to the overhead of storing values as interfaces (each
35// value needs to be stored as the value itself, then 2 words for the
36// interface pointing to that value and its type), resulting in higher
37// memory use.
38// * Since interfaces can point to values anywhere in memory, values are
39// most likely not stored in contiguous blocks, resulting in a higher
40// number of cache misses.
41// These issues don't tend to matter, though, when working with strings or other
42// heap-allocated structures, since C++-equivalent structures also must store
43// pointers and also distribute their values across the heap.
44//
45// This implementation is designed to be a drop-in replacement to gollrb.LLRB
46// trees, (http://github.com/petar/gollrb), an excellent and probably the most
47// widely used ordered tree implementation in the Go ecosystem currently.
48// Its functions, therefore, exactly mirror those of
49// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
50// support storing multiple equivalent values.
51package btree
52
53import (
54 "fmt"
55 "io"
56 "sort"
57 "strings"
58 "sync"
59)
60
61// Item represents a single object in the tree.
62type Item interface {
63 // Less tests whether the current item is less than the given argument.
64 //
65 // This must provide a strict weak ordering.
66 // If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
67 // hold one of either a or b in the tree).
68 Less(than Item) bool
69}
70
71const (
72 DefaultFreeListSize = 32
73)
74
75var (
76 nilItems = make(items, 16)
77 nilChildren = make(children, 16)
78)
79
80// FreeList represents a free list of btree nodes. By default each
81// BTree has its own FreeList, but multiple BTrees can share the same
82// FreeList.
83// Two Btrees using the same freelist are safe for concurrent write access.
84type FreeList struct {
85 mu sync.Mutex
86 freelist []*node
87}
88
89// NewFreeList creates a new free list.
90// size is the maximum size of the returned free list.
91func NewFreeList(size int) *FreeList {
92 return &FreeList{freelist: make([]*node, 0, size)}
93}
94
95func (f *FreeList) newNode() (n *node) {
96 f.mu.Lock()
97 index := len(f.freelist) - 1
98 if index < 0 {
99 f.mu.Unlock()
100 return new(node)
101 }
102 n = f.freelist[index]
103 f.freelist[index] = nil
104 f.freelist = f.freelist[:index]
105 f.mu.Unlock()
106 return
107}
108
109// freeNode adds the given node to the list, returning true if it was added
110// and false if it was discarded.
111func (f *FreeList) freeNode(n *node) (out bool) {
112 f.mu.Lock()
113 if len(f.freelist) < cap(f.freelist) {
114 f.freelist = append(f.freelist, n)
115 out = true
116 }
117 f.mu.Unlock()
118 return
119}
120
121// ItemIterator allows callers of Ascend* to iterate in-order over portions of
122// the tree. When this function returns false, iteration will stop and the
123// associated Ascend* function will immediately return.
124type ItemIterator func(i Item) bool
125
126// New creates a new B-Tree with the given degree.
127//
128// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
129// and 2-4 children).
130func New(degree int) *BTree {
131 return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
132}
133
134// NewWithFreeList creates a new B-Tree that uses the given node free list.
135func NewWithFreeList(degree int, f *FreeList) *BTree {
136 if degree <= 1 {
137 panic("bad degree")
138 }
139 return &BTree{
140 degree: degree,
141 cow: &copyOnWriteContext{freelist: f},
142 }
143}
144
145// items stores items in a node.
146type items []Item
147
148// insertAt inserts a value into the given index, pushing all subsequent values
149// forward.
150func (s *items) insertAt(index int, item Item) {
151 *s = append(*s, nil)
152 if index < len(*s) {
153 copy((*s)[index+1:], (*s)[index:])
154 }
155 (*s)[index] = item
156}
157
158// removeAt removes a value at a given index, pulling all subsequent values
159// back.
160func (s *items) removeAt(index int) Item {
161 item := (*s)[index]
162 copy((*s)[index:], (*s)[index+1:])
163 (*s)[len(*s)-1] = nil
164 *s = (*s)[:len(*s)-1]
165 return item
166}
167
168// pop removes and returns the last element in the list.
169func (s *items) pop() (out Item) {
170 index := len(*s) - 1
171 out = (*s)[index]
172 (*s)[index] = nil
173 *s = (*s)[:index]
174 return
175}
176
177// truncate truncates this instance at index so that it contains only the
178// first index items. index must be less than or equal to length.
179func (s *items) truncate(index int) {
180 var toClear items
181 *s, toClear = (*s)[:index], (*s)[index:]
182 for len(toClear) > 0 {
183 toClear = toClear[copy(toClear, nilItems):]
184 }
185}
186
187// find returns the index where the given item should be inserted into this
188// list. 'found' is true if the item already exists in the list at the given
189// index.
190func (s items) find(item Item) (index int, found bool) {
191 i := sort.Search(len(s), func(i int) bool {
192 return item.Less(s[i])
193 })
194 if i > 0 && !s[i-1].Less(item) {
195 return i - 1, true
196 }
197 return i, false
198}
199
200// children stores child nodes in a node.
201type children []*node
202
203// insertAt inserts a value into the given index, pushing all subsequent values
204// forward.
205func (s *children) insertAt(index int, n *node) {
206 *s = append(*s, nil)
207 if index < len(*s) {
208 copy((*s)[index+1:], (*s)[index:])
209 }
210 (*s)[index] = n
211}
212
213// removeAt removes a value at a given index, pulling all subsequent values
214// back.
215func (s *children) removeAt(index int) *node {
216 n := (*s)[index]
217 copy((*s)[index:], (*s)[index+1:])
218 (*s)[len(*s)-1] = nil
219 *s = (*s)[:len(*s)-1]
220 return n
221}
222
223// pop removes and returns the last element in the list.
224func (s *children) pop() (out *node) {
225 index := len(*s) - 1
226 out = (*s)[index]
227 (*s)[index] = nil
228 *s = (*s)[:index]
229 return
230}
231
232// truncate truncates this instance at index so that it contains only the
233// first index children. index must be less than or equal to length.
234func (s *children) truncate(index int) {
235 var toClear children
236 *s, toClear = (*s)[:index], (*s)[index:]
237 for len(toClear) > 0 {
238 toClear = toClear[copy(toClear, nilChildren):]
239 }
240}
241
242// node is an internal node in a tree.
243//
244// It must at all times maintain the invariant that either
245// * len(children) == 0, len(items) unconstrained
246// * len(children) == len(items) + 1
247type node struct {
248 items items
249 children children
250 cow *copyOnWriteContext
251}
252
253func (n *node) mutableFor(cow *copyOnWriteContext) *node {
254 if n.cow == cow {
255 return n
256 }
257 out := cow.newNode()
258 if cap(out.items) >= len(n.items) {
259 out.items = out.items[:len(n.items)]
260 } else {
261 out.items = make(items, len(n.items), cap(n.items))
262 }
263 copy(out.items, n.items)
264 // Copy children
265 if cap(out.children) >= len(n.children) {
266 out.children = out.children[:len(n.children)]
267 } else {
268 out.children = make(children, len(n.children), cap(n.children))
269 }
270 copy(out.children, n.children)
271 return out
272}
273
274func (n *node) mutableChild(i int) *node {
275 c := n.children[i].mutableFor(n.cow)
276 n.children[i] = c
277 return c
278}
279
280// split splits the given node at the given index. The current node shrinks,
281// and this function returns the item that existed at that index and a new node
282// containing all items/children after it.
283func (n *node) split(i int) (Item, *node) {
284 item := n.items[i]
285 next := n.cow.newNode()
286 next.items = append(next.items, n.items[i+1:]...)
287 n.items.truncate(i)
288 if len(n.children) > 0 {
289 next.children = append(next.children, n.children[i+1:]...)
290 n.children.truncate(i + 1)
291 }
292 return item, next
293}
294
295// maybeSplitChild checks if a child should be split, and if so splits it.
296// Returns whether or not a split occurred.
297func (n *node) maybeSplitChild(i, maxItems int) bool {
298 if len(n.children[i].items) < maxItems {
299 return false
300 }
301 first := n.mutableChild(i)
302 item, second := first.split(maxItems / 2)
303 n.items.insertAt(i, item)
304 n.children.insertAt(i+1, second)
305 return true
306}
307
308// insert inserts an item into the subtree rooted at this node, making sure
309// no nodes in the subtree exceed maxItems items. Should an equivalent item be
310// be found/replaced by insert, it will be returned.
311func (n *node) insert(item Item, maxItems int) Item {
312 i, found := n.items.find(item)
313 if found {
314 out := n.items[i]
315 n.items[i] = item
316 return out
317 }
318 if len(n.children) == 0 {
319 n.items.insertAt(i, item)
320 return nil
321 }
322 if n.maybeSplitChild(i, maxItems) {
323 inTree := n.items[i]
324 switch {
325 case item.Less(inTree):
326 // no change, we want first split node
327 case inTree.Less(item):
328 i++ // we want second split node
329 default:
330 out := n.items[i]
331 n.items[i] = item
332 return out
333 }
334 }
335 return n.mutableChild(i).insert(item, maxItems)
336}
337
338// get finds the given key in the subtree and returns it.
339func (n *node) get(key Item) Item {
340 i, found := n.items.find(key)
341 if found {
342 return n.items[i]
343 } else if len(n.children) > 0 {
344 return n.children[i].get(key)
345 }
346 return nil
347}
348
349// min returns the first item in the subtree.
350func min(n *node) Item {
351 if n == nil {
352 return nil
353 }
354 for len(n.children) > 0 {
355 n = n.children[0]
356 }
357 if len(n.items) == 0 {
358 return nil
359 }
360 return n.items[0]
361}
362
363// max returns the last item in the subtree.
364func max(n *node) Item {
365 if n == nil {
366 return nil
367 }
368 for len(n.children) > 0 {
369 n = n.children[len(n.children)-1]
370 }
371 if len(n.items) == 0 {
372 return nil
373 }
374 return n.items[len(n.items)-1]
375}
376
377// toRemove details what item to remove in a node.remove call.
378type toRemove int
379
380const (
381 removeItem toRemove = iota // removes the given item
382 removeMin // removes smallest item in the subtree
383 removeMax // removes largest item in the subtree
384)
385
386// remove removes an item from the subtree rooted at this node.
387func (n *node) remove(item Item, minItems int, typ toRemove) Item {
388 var i int
389 var found bool
390 switch typ {
391 case removeMax:
392 if len(n.children) == 0 {
393 return n.items.pop()
394 }
395 i = len(n.items)
396 case removeMin:
397 if len(n.children) == 0 {
398 return n.items.removeAt(0)
399 }
400 i = 0
401 case removeItem:
402 i, found = n.items.find(item)
403 if len(n.children) == 0 {
404 if found {
405 return n.items.removeAt(i)
406 }
407 return nil
408 }
409 default:
410 panic("invalid type")
411 }
412 // If we get to here, we have children.
413 if len(n.children[i].items) <= minItems {
414 return n.growChildAndRemove(i, item, minItems, typ)
415 }
416 child := n.mutableChild(i)
417 // Either we had enough items to begin with, or we've done some
418 // merging/stealing, because we've got enough now and we're ready to return
419 // stuff.
420 if found {
421 // The item exists at index 'i', and the child we've selected can give us a
422 // predecessor, since if we've gotten here it's got > minItems items in it.
423 out := n.items[i]
424 // We use our special-case 'remove' call with typ=maxItem to pull the
425 // predecessor of item i (the rightmost leaf of our immediate left child)
426 // and set it into where we pulled the item from.
427 n.items[i] = child.remove(nil, minItems, removeMax)
428 return out
429 }
430 // Final recursive call. Once we're here, we know that the item isn't in this
431 // node and that the child is big enough to remove from.
432 return child.remove(item, minItems, typ)
433}
434
435// growChildAndRemove grows child 'i' to make sure it's possible to remove an
436// item from it while keeping it at minItems, then calls remove to actually
437// remove it.
438//
439// Most documentation says we have to do two sets of special casing:
440// 1) item is in this node
441// 2) item is in child
442// In both cases, we need to handle the two subcases:
443// A) node has enough values that it can spare one
444// B) node doesn't have enough values
445// For the latter, we have to check:
446// a) left sibling has node to spare
447// b) right sibling has node to spare
448// c) we must merge
449// To simplify our code here, we handle cases #1 and #2 the same:
450// If a node doesn't have enough items, we make sure it does (using a,b,c).
451// We then simply redo our remove call, and the second time (regardless of
452// whether we're in case 1 or 2), we'll have enough items and can guarantee
453// that we hit case A.
454func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
455 if i > 0 && len(n.children[i-1].items) > minItems {
456 // Steal from left child
457 child := n.mutableChild(i)
458 stealFrom := n.mutableChild(i - 1)
459 stolenItem := stealFrom.items.pop()
460 child.items.insertAt(0, n.items[i-1])
461 n.items[i-1] = stolenItem
462 if len(stealFrom.children) > 0 {
463 child.children.insertAt(0, stealFrom.children.pop())
464 }
465 } else if i < len(n.items) && len(n.children[i+1].items) > minItems {
466 // steal from right child
467 child := n.mutableChild(i)
468 stealFrom := n.mutableChild(i + 1)
469 stolenItem := stealFrom.items.removeAt(0)
470 child.items = append(child.items, n.items[i])
471 n.items[i] = stolenItem
472 if len(stealFrom.children) > 0 {
473 child.children = append(child.children, stealFrom.children.removeAt(0))
474 }
475 } else {
476 if i >= len(n.items) {
477 i--
478 }
479 child := n.mutableChild(i)
480 // merge with right child
481 mergeItem := n.items.removeAt(i)
Abhay Kumara2ae5992025-11-10 14:02:24 +0000482 mergeChild := n.children.removeAt(i + 1).mutableFor(n.cow)
khenaidooab1f7bd2019-11-14 14:00:27 -0500483 child.items = append(child.items, mergeItem)
484 child.items = append(child.items, mergeChild.items...)
485 child.children = append(child.children, mergeChild.children...)
486 n.cow.freeNode(mergeChild)
487 }
488 return n.remove(item, minItems, typ)
489}
490
491type direction int
492
493const (
494 descend = direction(-1)
495 ascend = direction(+1)
496)
497
498// iterate provides a simple method for iterating over elements in the tree.
499//
500// When ascending, the 'start' should be less than 'stop' and when descending,
501// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
502// will force the iterator to include the first item when it equals 'start',
503// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
504// "greaterThan" or "lessThan" queries.
505func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
506 var ok, found bool
507 var index int
508 switch dir {
509 case ascend:
510 if start != nil {
511 index, _ = n.items.find(start)
512 }
513 for i := index; i < len(n.items); i++ {
514 if len(n.children) > 0 {
515 if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
516 return hit, false
517 }
518 }
519 if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
520 hit = true
521 continue
522 }
523 hit = true
524 if stop != nil && !n.items[i].Less(stop) {
525 return hit, false
526 }
527 if !iter(n.items[i]) {
528 return hit, false
529 }
530 }
531 if len(n.children) > 0 {
532 if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
533 return hit, false
534 }
535 }
536 case descend:
537 if start != nil {
538 index, found = n.items.find(start)
539 if !found {
540 index = index - 1
541 }
542 } else {
543 index = len(n.items) - 1
544 }
545 for i := index; i >= 0; i-- {
546 if start != nil && !n.items[i].Less(start) {
547 if !includeStart || hit || start.Less(n.items[i]) {
548 continue
549 }
550 }
551 if len(n.children) > 0 {
552 if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
553 return hit, false
554 }
555 }
556 if stop != nil && !stop.Less(n.items[i]) {
557 return hit, false // continue
558 }
559 hit = true
560 if !iter(n.items[i]) {
561 return hit, false
562 }
563 }
564 if len(n.children) > 0 {
565 if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
566 return hit, false
567 }
568 }
569 }
570 return hit, true
571}
572
573// Used for testing/debugging purposes.
574func (n *node) print(w io.Writer, level int) {
575 fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
576 for _, c := range n.children {
577 c.print(w, level+1)
578 }
579}
580
581// BTree is an implementation of a B-Tree.
582//
583// BTree stores Item instances in an ordered structure, allowing easy insertion,
584// removal, and iteration.
585//
586// Write operations are not safe for concurrent mutation by multiple
587// goroutines, but Read operations are.
588type BTree struct {
589 degree int
590 length int
591 root *node
592 cow *copyOnWriteContext
593}
594
595// copyOnWriteContext pointers determine node ownership... a tree with a write
596// context equivalent to a node's write context is allowed to modify that node.
597// A tree whose write context does not match a node's is not allowed to modify
598// it, and must create a new, writable copy (IE: it's a Clone).
599//
600// When doing any write operation, we maintain the invariant that the current
601// node's context is equal to the context of the tree that requested the write.
602// We do this by, before we descend into any node, creating a copy with the
603// correct context if the contexts don't match.
604//
605// Since the node we're currently visiting on any write has the requesting
606// tree's context, that node is modifiable in place. Children of that node may
607// not share context, but before we descend into them, we'll make a mutable
608// copy.
609type copyOnWriteContext struct {
610 freelist *FreeList
611}
612
613// Clone clones the btree, lazily. Clone should not be called concurrently,
614// but the original tree (t) and the new tree (t2) can be used concurrently
615// once the Clone call completes.
616//
617// The internal tree structure of b is marked read-only and shared between t and
618// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
619// whenever one of b's original nodes would have been modified. Read operations
620// should have no performance degredation. Write operations for both t and t2
621// will initially experience minor slow-downs caused by additional allocs and
622// copies due to the aforementioned copy-on-write logic, but should converge to
623// the original performance characteristics of the original tree.
624func (t *BTree) Clone() (t2 *BTree) {
625 // Create two entirely new copy-on-write contexts.
626 // This operation effectively creates three trees:
627 // the original, shared nodes (old b.cow)
628 // the new b.cow nodes
629 // the new out.cow nodes
630 cow1, cow2 := *t.cow, *t.cow
631 out := *t
632 t.cow = &cow1
633 out.cow = &cow2
634 return &out
635}
636
637// maxItems returns the max number of items to allow per node.
638func (t *BTree) maxItems() int {
639 return t.degree*2 - 1
640}
641
642// minItems returns the min number of items to allow per node (ignored for the
643// root node).
644func (t *BTree) minItems() int {
645 return t.degree - 1
646}
647
648func (c *copyOnWriteContext) newNode() (n *node) {
649 n = c.freelist.newNode()
650 n.cow = c
651 return
652}
653
654type freeType int
655
656const (
657 ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
658 ftStored // node was stored in the freelist for later use
659 ftNotOwned // node was ignored by COW, since it's owned by another one
660)
661
662// freeNode frees a node within a given COW context, if it's owned by that
663// context. It returns what happened to the node (see freeType const
664// documentation).
665func (c *copyOnWriteContext) freeNode(n *node) freeType {
666 if n.cow == c {
667 // clear to allow GC
668 n.items.truncate(0)
669 n.children.truncate(0)
670 n.cow = nil
671 if c.freelist.freeNode(n) {
672 return ftStored
673 } else {
674 return ftFreelistFull
675 }
676 } else {
677 return ftNotOwned
678 }
679}
680
681// ReplaceOrInsert adds the given item to the tree. If an item in the tree
682// already equals the given one, it is removed from the tree and returned.
683// Otherwise, nil is returned.
684//
685// nil cannot be added to the tree (will panic).
686func (t *BTree) ReplaceOrInsert(item Item) Item {
687 if item == nil {
688 panic("nil item being added to BTree")
689 }
690 if t.root == nil {
691 t.root = t.cow.newNode()
692 t.root.items = append(t.root.items, item)
693 t.length++
694 return nil
695 } else {
696 t.root = t.root.mutableFor(t.cow)
697 if len(t.root.items) >= t.maxItems() {
698 item2, second := t.root.split(t.maxItems() / 2)
699 oldroot := t.root
700 t.root = t.cow.newNode()
701 t.root.items = append(t.root.items, item2)
702 t.root.children = append(t.root.children, oldroot, second)
703 }
704 }
705 out := t.root.insert(item, t.maxItems())
706 if out == nil {
707 t.length++
708 }
709 return out
710}
711
712// Delete removes an item equal to the passed in item from the tree, returning
713// it. If no such item exists, returns nil.
714func (t *BTree) Delete(item Item) Item {
715 return t.deleteItem(item, removeItem)
716}
717
718// DeleteMin removes the smallest item in the tree and returns it.
719// If no such item exists, returns nil.
720func (t *BTree) DeleteMin() Item {
721 return t.deleteItem(nil, removeMin)
722}
723
724// DeleteMax removes the largest item in the tree and returns it.
725// If no such item exists, returns nil.
726func (t *BTree) DeleteMax() Item {
727 return t.deleteItem(nil, removeMax)
728}
729
730func (t *BTree) deleteItem(item Item, typ toRemove) Item {
731 if t.root == nil || len(t.root.items) == 0 {
732 return nil
733 }
734 t.root = t.root.mutableFor(t.cow)
735 out := t.root.remove(item, t.minItems(), typ)
736 if len(t.root.items) == 0 && len(t.root.children) > 0 {
737 oldroot := t.root
738 t.root = t.root.children[0]
739 t.cow.freeNode(oldroot)
740 }
741 if out != nil {
742 t.length--
743 }
744 return out
745}
746
747// AscendRange calls the iterator for every value in the tree within the range
748// [greaterOrEqual, lessThan), until iterator returns false.
749func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
750 if t.root == nil {
751 return
752 }
753 t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
754}
755
756// AscendLessThan calls the iterator for every value in the tree within the range
757// [first, pivot), until iterator returns false.
758func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
759 if t.root == nil {
760 return
761 }
762 t.root.iterate(ascend, nil, pivot, false, false, iterator)
763}
764
765// AscendGreaterOrEqual calls the iterator for every value in the tree within
766// the range [pivot, last], until iterator returns false.
767func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
768 if t.root == nil {
769 return
770 }
771 t.root.iterate(ascend, pivot, nil, true, false, iterator)
772}
773
774// Ascend calls the iterator for every value in the tree within the range
775// [first, last], until iterator returns false.
776func (t *BTree) Ascend(iterator ItemIterator) {
777 if t.root == nil {
778 return
779 }
780 t.root.iterate(ascend, nil, nil, false, false, iterator)
781}
782
783// DescendRange calls the iterator for every value in the tree within the range
784// [lessOrEqual, greaterThan), until iterator returns false.
785func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
786 if t.root == nil {
787 return
788 }
789 t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
790}
791
792// DescendLessOrEqual calls the iterator for every value in the tree within the range
793// [pivot, first], until iterator returns false.
794func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
795 if t.root == nil {
796 return
797 }
798 t.root.iterate(descend, pivot, nil, true, false, iterator)
799}
800
801// DescendGreaterThan calls the iterator for every value in the tree within
khenaidood948f772021-08-11 17:49:24 -0400802// the range [last, pivot), until iterator returns false.
khenaidooab1f7bd2019-11-14 14:00:27 -0500803func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
804 if t.root == nil {
805 return
806 }
807 t.root.iterate(descend, nil, pivot, false, false, iterator)
808}
809
810// Descend calls the iterator for every value in the tree within the range
811// [last, first], until iterator returns false.
812func (t *BTree) Descend(iterator ItemIterator) {
813 if t.root == nil {
814 return
815 }
816 t.root.iterate(descend, nil, nil, false, false, iterator)
817}
818
819// Get looks for the key item in the tree, returning it. It returns nil if
820// unable to find that item.
821func (t *BTree) Get(key Item) Item {
822 if t.root == nil {
823 return nil
824 }
825 return t.root.get(key)
826}
827
828// Min returns the smallest item in the tree, or nil if the tree is empty.
829func (t *BTree) Min() Item {
830 return min(t.root)
831}
832
833// Max returns the largest item in the tree, or nil if the tree is empty.
834func (t *BTree) Max() Item {
835 return max(t.root)
836}
837
838// Has returns true if the given key is in the tree.
839func (t *BTree) Has(key Item) bool {
840 return t.Get(key) != nil
841}
842
843// Len returns the number of items currently in the tree.
844func (t *BTree) Len() int {
845 return t.length
846}
847
848// Clear removes all items from the btree. If addNodesToFreelist is true,
849// t's nodes are added to its freelist as part of this call, until the freelist
850// is full. Otherwise, the root node is simply dereferenced and the subtree
851// left to Go's normal GC processes.
852//
853// This can be much faster
854// than calling Delete on all elements, because that requires finding/removing
855// each element in the tree and updating the tree accordingly. It also is
856// somewhat faster than creating a new tree to replace the old one, because
857// nodes from the old tree are reclaimed into the freelist for use by the new
858// one, instead of being lost to the garbage collector.
859//
860// This call takes:
861// O(1): when addNodesToFreelist is false, this is a single operation.
862// O(1): when the freelist is already full, it breaks out immediately
863// O(freelist size): when the freelist is empty and the nodes are all owned
864// by this tree, nodes are added to the freelist until full.
865// O(tree size): when all nodes are owned by another tree, all nodes are
866// iterated over looking for nodes to add to the freelist, and due to
867// ownership, none are.
868func (t *BTree) Clear(addNodesToFreelist bool) {
869 if t.root != nil && addNodesToFreelist {
870 t.root.reset(t.cow)
871 }
872 t.root, t.length = nil, 0
873}
874
875// reset returns a subtree to the freelist. It breaks out immediately if the
876// freelist is full, since the only benefit of iterating is to fill that
877// freelist up. Returns true if parent reset call should continue.
878func (n *node) reset(c *copyOnWriteContext) bool {
879 for _, child := range n.children {
880 if !child.reset(c) {
881 return false
882 }
883 }
884 return c.freeNode(n) != ftFreelistFull
885}
886
887// Int implements the Item interface for integers.
888type Int int
889
890// Less returns true if int(a) < int(b).
891func (a Int) Less(b Item) bool {
892 return a < b.(Int)
893}