blob: a4da2ae2e23c9e0816f10666eb29e90f87e4b0cc [file] [log] [blame]
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"errors"
pb "go.etcd.io/raft/v3/raftpb"
"go.etcd.io/raft/v3/tracker"
)
// ErrStepLocalMsg is returned when try to step a local raft message
var ErrStepLocalMsg = errors.New("raft: cannot step raft local message")
// ErrStepPeerNotFound is returned when try to step a response message
// but there is no peer found in raft.trk for that node.
var ErrStepPeerNotFound = errors.New("raft: cannot step as peer not found")
// RawNode is a thread-unsafe Node.
// The methods of this struct correspond to the methods of Node and are described
// more fully there.
type RawNode struct {
raft *raft
asyncStorageWrites bool
// Mutable fields.
prevSoftSt *SoftState
prevHardSt pb.HardState
stepsOnAdvance []pb.Message
}
// NewRawNode instantiates a RawNode from the given configuration.
//
// See Bootstrap() for bootstrapping an initial state; this replaces the former
// 'peers' argument to this method (with identical behavior). However, It is
// recommended that instead of calling Bootstrap, applications bootstrap their
// state manually by setting up a Storage that has a first index > 1 and which
// stores the desired ConfState as its InitialState.
func NewRawNode(config *Config) (*RawNode, error) {
r := newRaft(config)
rn := &RawNode{
raft: r,
}
rn.asyncStorageWrites = config.AsyncStorageWrites
ss := r.softState()
rn.prevSoftSt = &ss
rn.prevHardSt = r.hardState()
return rn, nil
}
// Tick advances the internal logical clock by a single tick.
func (rn *RawNode) Tick() {
rn.raft.tick()
}
// TickQuiesced advances the internal logical clock by a single tick without
// performing any other state machine processing. It allows the caller to avoid
// periodic heartbeats and elections when all of the peers in a Raft group are
// known to be at the same state. Expected usage is to periodically invoke Tick
// or TickQuiesced depending on whether the group is "active" or "quiesced".
//
// WARNING: Be very careful about using this method as it subverts the Raft
// state machine. You should probably be using Tick instead.
//
// DEPRECATED: This method will be removed in a future release.
func (rn *RawNode) TickQuiesced() {
rn.raft.electionElapsed++
}
// Campaign causes this RawNode to transition to candidate state.
func (rn *RawNode) Campaign() error {
return rn.raft.Step(pb.Message{
Type: pb.MsgHup,
})
}
// Propose proposes data be appended to the raft log.
func (rn *RawNode) Propose(data []byte) error {
return rn.raft.Step(pb.Message{
Type: pb.MsgProp,
From: rn.raft.id,
Entries: []pb.Entry{
{Data: data},
}})
}
// ProposeConfChange proposes a config change. See (Node).ProposeConfChange for
// details.
func (rn *RawNode) ProposeConfChange(cc pb.ConfChangeI) error {
m, err := confChangeToMsg(cc)
if err != nil {
return err
}
return rn.raft.Step(m)
}
// ApplyConfChange applies a config change to the local node. The app must call
// this when it applies a configuration change, except when it decides to reject
// the configuration change, in which case no call must take place.
func (rn *RawNode) ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState {
cs := rn.raft.applyConfChange(cc.AsV2())
return &cs
}
// Step advances the state machine using the given message.
func (rn *RawNode) Step(m pb.Message) error {
// Ignore unexpected local messages receiving over network.
if IsLocalMsg(m.Type) && !IsLocalMsgTarget(m.From) {
return ErrStepLocalMsg
}
if IsResponseMsg(m.Type) && !IsLocalMsgTarget(m.From) && rn.raft.trk.Progress[m.From] == nil {
return ErrStepPeerNotFound
}
return rn.raft.Step(m)
}
// Ready returns the outstanding work that the application needs to handle. This
// includes appending and applying entries or a snapshot, updating the HardState,
// and sending messages. The returned Ready() *must* be handled and subsequently
// passed back via Advance().
func (rn *RawNode) Ready() Ready {
rd := rn.readyWithoutAccept()
rn.acceptReady(rd)
return rd
}
// readyWithoutAccept returns a Ready. This is a read-only operation, i.e. there
// is no obligation that the Ready must be handled.
func (rn *RawNode) readyWithoutAccept() Ready {
r := rn.raft
rd := Ready{
Entries: r.raftLog.nextUnstableEnts(),
CommittedEntries: r.raftLog.nextCommittedEnts(rn.applyUnstableEntries()),
Messages: r.msgs,
}
if softSt := r.softState(); !softSt.equal(rn.prevSoftSt) {
// Allocate only when SoftState changes.
escapingSoftSt := softSt
rd.SoftState = &escapingSoftSt
}
if hardSt := r.hardState(); !isHardStateEqual(hardSt, rn.prevHardSt) {
rd.HardState = hardSt
}
if r.raftLog.hasNextUnstableSnapshot() {
rd.Snapshot = *r.raftLog.nextUnstableSnapshot()
}
if len(r.readStates) != 0 {
rd.ReadStates = r.readStates
}
rd.MustSync = MustSync(r.hardState(), rn.prevHardSt, len(rd.Entries))
if rn.asyncStorageWrites {
// If async storage writes are enabled, enqueue messages to
// local storage threads, where applicable.
if needStorageAppendMsg(r, rd) {
m := newStorageAppendMsg(r, rd)
rd.Messages = append(rd.Messages, m)
}
if needStorageApplyMsg(rd) {
m := newStorageApplyMsg(r, rd)
rd.Messages = append(rd.Messages, m)
}
} else {
// If async storage writes are disabled, immediately enqueue
// msgsAfterAppend to be sent out. The Ready struct contract
// mandates that Messages cannot be sent until after Entries
// are written to stable storage.
for _, m := range r.msgsAfterAppend {
if m.To != r.id {
rd.Messages = append(rd.Messages, m)
}
}
}
return rd
}
// MustSync returns true if the hard state and count of Raft entries indicate
// that a synchronous write to persistent storage is required.
func MustSync(st, prevst pb.HardState, entsnum int) bool {
// Persistent state on all servers:
// (Updated on stable storage before responding to RPCs)
// currentTerm
// votedFor
// log entries[]
return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
}
func needStorageAppendMsg(r *raft, rd Ready) bool {
// Return true if log entries, hard state, or a snapshot need to be written
// to stable storage. Also return true if any messages are contingent on all
// prior MsgStorageAppend being processed.
return len(rd.Entries) > 0 ||
!IsEmptyHardState(rd.HardState) ||
!IsEmptySnap(rd.Snapshot) ||
len(r.msgsAfterAppend) > 0
}
func needStorageAppendRespMsg(r *raft, rd Ready) bool {
// Return true if raft needs to hear about stabilized entries or an applied
// snapshot. See the comment in newStorageAppendRespMsg, which explains why
// we check hasNextOrInProgressUnstableEnts instead of len(rd.Entries) > 0.
return r.raftLog.hasNextOrInProgressUnstableEnts() ||
!IsEmptySnap(rd.Snapshot)
}
// newStorageAppendMsg creates the message that should be sent to the local
// append thread to instruct it to append log entries, write an updated hard
// state, and apply a snapshot. The message also carries a set of responses
// that should be delivered after the rest of the message is processed. Used
// with AsyncStorageWrites.
func newStorageAppendMsg(r *raft, rd Ready) pb.Message {
m := pb.Message{
Type: pb.MsgStorageAppend,
To: LocalAppendThread,
From: r.id,
Entries: rd.Entries,
}
if !IsEmptyHardState(rd.HardState) {
// If the Ready includes a HardState update, assign each of its fields
// to the corresponding fields in the Message. This allows clients to
// reconstruct the HardState and save it to stable storage.
//
// If the Ready does not include a HardState update, make sure to not
// assign a value to any of the fields so that a HardState reconstructed
// from them will be empty (return true from raft.IsEmptyHardState).
m.Term = rd.Term
m.Vote = rd.Vote
m.Commit = rd.Commit
}
if !IsEmptySnap(rd.Snapshot) {
snap := rd.Snapshot
m.Snapshot = &snap
}
// Attach all messages in msgsAfterAppend as responses to be delivered after
// the message is processed, along with a self-directed MsgStorageAppendResp
// to acknowledge the entry stability.
//
// NB: it is important for performance that MsgStorageAppendResp message be
// handled after self-directed MsgAppResp messages on the leader (which will
// be contained in msgsAfterAppend). This ordering allows the MsgAppResp
// handling to use a fast-path in r.raftLog.term() before the newly appended
// entries are removed from the unstable log.
m.Responses = r.msgsAfterAppend
if needStorageAppendRespMsg(r, rd) {
m.Responses = append(m.Responses, newStorageAppendRespMsg(r, rd))
}
return m
}
// newStorageAppendRespMsg creates the message that should be returned to node
// after the unstable log entries, hard state, and snapshot in the current Ready
// (along with those in all prior Ready structs) have been saved to stable
// storage.
func newStorageAppendRespMsg(r *raft, rd Ready) pb.Message {
m := pb.Message{
Type: pb.MsgStorageAppendResp,
To: r.id,
From: LocalAppendThread,
// Dropped after term change, see below.
Term: r.Term,
}
if r.raftLog.hasNextOrInProgressUnstableEnts() {
// If the raft log has unstable entries, attach the last index and term of the
// append to the response message. This (index, term) tuple will be handed back
// and consulted when the stability of those log entries is signaled to the
// unstable. If the (index, term) match the unstable log by the time the
// response is received (unstable.stableTo), the unstable log can be truncated.
//
// However, with just this logic, there would be an ABA problem[^1] that could
// lead to the unstable log and the stable log getting out of sync temporarily
// and leading to an inconsistent view. Consider the following example with 5
// nodes, A B C D E:
//
// 1. A is the leader.
// 2. A proposes some log entries but only B receives these entries.
// 3. B gets the Ready and the entries are appended asynchronously.
// 4. A crashes and C becomes leader after getting a vote from D and E.
// 5. C proposes some log entries and B receives these entries, overwriting the
// previous unstable log entries that are in the process of being appended.
// The entries have a larger term than the previous entries but the same
// indexes. It begins appending these new entries asynchronously.
// 6. C crashes and A restarts and becomes leader again after getting the vote
// from D and E.
// 7. B receives the entries from A which are the same as the ones from step 2,
// overwriting the previous unstable log entries that are in the process of
// being appended from step 5. The entries have the original terms and
// indexes from step 2. Recall that log entries retain their original term
// numbers when a leader replicates entries from previous terms. It begins
// appending these new entries asynchronously.
// 8. The asynchronous log appends from the first Ready complete and stableTo
// is called.
// 9. However, the log entries from the second Ready are still in the
// asynchronous append pipeline and will overwrite (in stable storage) the
// entries from the first Ready at some future point. We can't truncate the
// unstable log yet or a future read from Storage might see the entries from
// step 5 before they have been replaced by the entries from step 7.
// Instead, we must wait until we are sure that the entries are stable and
// that no in-progress appends might overwrite them before removing entries
// from the unstable log.
//
// To prevent these kinds of problems, we also attach the current term to the
// MsgStorageAppendResp (above). If the term has changed by the time the
// MsgStorageAppendResp if returned, the response is ignored and the unstable
// log is not truncated. The unstable log is only truncated when the term has
// remained unchanged from the time that the MsgStorageAppend was sent to the
// time that the MsgStorageAppendResp is received, indicating that no-one else
// is in the process of truncating the stable log.
//
// However, this replaces a correctness problem with a liveness problem. If we
// only attempted to truncate the unstable log when appending new entries but
// also occasionally dropped these responses, then quiescence of new log entries
// could lead to the unstable log never being truncated.
//
// To combat this, we attempt to truncate the log on all MsgStorageAppendResp
// messages where the unstable log is not empty, not just those associated with
// entry appends. This includes MsgStorageAppendResp messages associated with an
// updated HardState, which occur after a term change.
//
// In other words, we set Index and LogTerm in a block that looks like:
//
// if r.raftLog.hasNextOrInProgressUnstableEnts() { ... }
//
// not like:
//
// if len(rd.Entries) > 0 { ... }
//
// To do so, we attach r.raftLog.lastIndex() and r.raftLog.lastTerm(), not the
// (index, term) of the last entry in rd.Entries. If rd.Entries is not empty,
// these will be the same. However, if rd.Entries is empty, we still want to
// attest that this (index, term) is correct at the current term, in case the
// MsgStorageAppend that contained the last entry in the unstable slice carried
// an earlier term and was dropped.
//
// A MsgStorageAppend with a new term is emitted on each term change. This is
// the same condition that causes MsgStorageAppendResp messages with earlier
// terms to be ignored. As a result, we are guaranteed that, assuming a bounded
// number of term changes, there will eventually be a MsgStorageAppendResp
// message that is not ignored. This means that entries in the unstable log
// which have been appended to stable storage will eventually be truncated and
// dropped from memory.
//
// [^1]: https://en.wikipedia.org/wiki/ABA_problem
last := r.raftLog.lastEntryID()
m.Index = last.index
m.LogTerm = last.term
}
if !IsEmptySnap(rd.Snapshot) {
snap := rd.Snapshot
m.Snapshot = &snap
}
return m
}
func needStorageApplyMsg(rd Ready) bool { return len(rd.CommittedEntries) > 0 }
func needStorageApplyRespMsg(rd Ready) bool { return needStorageApplyMsg(rd) }
// newStorageApplyMsg creates the message that should be sent to the local
// apply thread to instruct it to apply committed log entries. The message
// also carries a response that should be delivered after the rest of the
// message is processed. Used with AsyncStorageWrites.
func newStorageApplyMsg(r *raft, rd Ready) pb.Message {
ents := rd.CommittedEntries
return pb.Message{
Type: pb.MsgStorageApply,
To: LocalApplyThread,
From: r.id,
Term: 0, // committed entries don't apply under a specific term
Entries: ents,
Responses: []pb.Message{
newStorageApplyRespMsg(r, ents),
},
}
}
// newStorageApplyRespMsg creates the message that should be returned to node
// after the committed entries in the current Ready (along with those in all
// prior Ready structs) have been applied to the local state machine.
func newStorageApplyRespMsg(r *raft, ents []pb.Entry) pb.Message {
return pb.Message{
Type: pb.MsgStorageApplyResp,
To: r.id,
From: LocalApplyThread,
Term: 0, // committed entries don't apply under a specific term
Entries: ents,
}
}
// acceptReady is called when the consumer of the RawNode has decided to go
// ahead and handle a Ready. Nothing must alter the state of the RawNode between
// this call and the prior call to Ready().
func (rn *RawNode) acceptReady(rd Ready) {
if rd.SoftState != nil {
rn.prevSoftSt = rd.SoftState
}
if !IsEmptyHardState(rd.HardState) {
rn.prevHardSt = rd.HardState
}
if len(rd.ReadStates) != 0 {
rn.raft.readStates = nil
}
if !rn.asyncStorageWrites {
if len(rn.stepsOnAdvance) != 0 {
rn.raft.logger.Panicf("two accepted Ready structs without call to Advance")
}
for _, m := range rn.raft.msgsAfterAppend {
if m.To == rn.raft.id {
rn.stepsOnAdvance = append(rn.stepsOnAdvance, m)
}
}
if needStorageAppendRespMsg(rn.raft, rd) {
m := newStorageAppendRespMsg(rn.raft, rd)
rn.stepsOnAdvance = append(rn.stepsOnAdvance, m)
}
if needStorageApplyRespMsg(rd) {
m := newStorageApplyRespMsg(rn.raft, rd.CommittedEntries)
rn.stepsOnAdvance = append(rn.stepsOnAdvance, m)
}
}
rn.raft.msgs = nil
rn.raft.msgsAfterAppend = nil
rn.raft.raftLog.acceptUnstable()
if len(rd.CommittedEntries) > 0 {
ents := rd.CommittedEntries
index := ents[len(ents)-1].Index
rn.raft.raftLog.acceptApplying(index, entsSize(ents), rn.applyUnstableEntries())
}
traceReady(rn.raft)
}
// applyUnstableEntries returns whether entries are allowed to be applied once
// they are known to be committed but before they have been written locally to
// stable storage.
func (rn *RawNode) applyUnstableEntries() bool {
return !rn.asyncStorageWrites
}
// HasReady called when RawNode user need to check if any Ready pending.
func (rn *RawNode) HasReady() bool {
// TODO(nvanbenschoten): order these cases in terms of cost and frequency.
r := rn.raft
if softSt := r.softState(); !softSt.equal(rn.prevSoftSt) {
return true
}
if hardSt := r.hardState(); !IsEmptyHardState(hardSt) && !isHardStateEqual(hardSt, rn.prevHardSt) {
return true
}
if r.raftLog.hasNextUnstableSnapshot() {
return true
}
if len(r.msgs) > 0 || len(r.msgsAfterAppend) > 0 {
return true
}
if r.raftLog.hasNextUnstableEnts() || r.raftLog.hasNextCommittedEnts(rn.applyUnstableEntries()) {
return true
}
if len(r.readStates) != 0 {
return true
}
return false
}
// Advance notifies the RawNode that the application has applied and saved progress in the
// last Ready results.
//
// NOTE: Advance must not be called when using AsyncStorageWrites. Response messages from
// the local append and apply threads take its place.
func (rn *RawNode) Advance(_ Ready) {
// The actions performed by this function are encoded into stepsOnAdvance in
// acceptReady. In earlier versions of this library, they were computed from
// the provided Ready struct. Retain the unused parameter for compatibility.
if rn.asyncStorageWrites {
rn.raft.logger.Panicf("Advance must not be called when using AsyncStorageWrites")
}
for i, m := range rn.stepsOnAdvance {
_ = rn.raft.Step(m)
rn.stepsOnAdvance[i] = pb.Message{}
}
rn.stepsOnAdvance = rn.stepsOnAdvance[:0]
}
// Status returns the current status of the given group. This allocates, see
// BasicStatus and WithProgress for allocation-friendlier choices.
func (rn *RawNode) Status() Status {
status := getStatus(rn.raft)
return status
}
// BasicStatus returns a BasicStatus. Notably this does not contain the
// Progress map; see WithProgress for an allocation-free way to inspect it.
func (rn *RawNode) BasicStatus() BasicStatus {
return getBasicStatus(rn.raft)
}
// ProgressType indicates the type of replica a Progress corresponds to.
type ProgressType byte
const (
// ProgressTypePeer accompanies a Progress for a regular peer replica.
ProgressTypePeer ProgressType = iota
// ProgressTypeLearner accompanies a Progress for a learner replica.
ProgressTypeLearner
)
// WithProgress is a helper to introspect the Progress for this node and its
// peers.
func (rn *RawNode) WithProgress(visitor func(id uint64, typ ProgressType, pr tracker.Progress)) {
rn.raft.trk.Visit(func(id uint64, pr *tracker.Progress) {
typ := ProgressTypePeer
if pr.IsLearner {
typ = ProgressTypeLearner
}
p := *pr
p.Inflights = nil
visitor(id, typ, p)
})
}
// ReportUnreachable reports the given node is not reachable for the last send.
func (rn *RawNode) ReportUnreachable(id uint64) {
_ = rn.raft.Step(pb.Message{Type: pb.MsgUnreachable, From: id})
}
// ReportSnapshot reports the status of the sent snapshot.
func (rn *RawNode) ReportSnapshot(id uint64, status SnapshotStatus) {
rej := status == SnapshotFailure
_ = rn.raft.Step(pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej})
}
// TransferLeader tries to transfer leadership to the given transferee.
func (rn *RawNode) TransferLeader(transferee uint64) {
_ = rn.raft.Step(pb.Message{Type: pb.MsgTransferLeader, From: transferee})
}
// ForgetLeader forgets a follower's current leader, changing it to None.
// See (Node).ForgetLeader for details.
func (rn *RawNode) ForgetLeader() error {
return rn.raft.Step(pb.Message{Type: pb.MsgForgetLeader})
}
// ReadIndex requests a read state. The read state will be set in ready.
// Read State has a read index. Once the application advances further than the read
// index, any linearizable read requests issued before the read request can be
// processed safely. The read state will have the same rctx attached.
func (rn *RawNode) ReadIndex(rctx []byte) {
_ = rn.raft.Step(pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
}