blob: 94c2363d59e0de4195c9a78af42cfc5c4bf1512b [file] [log] [blame]
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"bytes"
"crypto/rand"
"errors"
"fmt"
"math"
"math/big"
"slices"
"strings"
"sync"
"go.etcd.io/raft/v3/confchange"
"go.etcd.io/raft/v3/quorum"
pb "go.etcd.io/raft/v3/raftpb"
"go.etcd.io/raft/v3/tracker"
)
const (
// None is a placeholder node ID used when there is no leader.
None uint64 = 0
// LocalAppendThread is a reference to a local thread that saves unstable
// log entries and snapshots to stable storage. The identifier is used as a
// target for MsgStorageAppend messages when AsyncStorageWrites is enabled.
LocalAppendThread uint64 = math.MaxUint64
// LocalApplyThread is a reference to a local thread that applies committed
// log entries to the local state machine. The identifier is used as a
// target for MsgStorageApply messages when AsyncStorageWrites is enabled.
LocalApplyThread uint64 = math.MaxUint64 - 1
)
// Possible values for StateType.
const (
StateFollower StateType = iota
StateCandidate
StateLeader
StatePreCandidate
numStates
)
type ReadOnlyOption int
const (
// ReadOnlySafe guarantees the linearizability of the read only request by
// communicating with the quorum. It is the default and suggested option.
ReadOnlySafe ReadOnlyOption = iota
// ReadOnlyLeaseBased ensures linearizability of the read only request by
// relying on the leader lease. It can be affected by clock drift.
// If the clock drift is unbounded, leader might keep the lease longer than it
// should (clock can move backward/pause without any bound). ReadIndex is not safe
// in that case.
ReadOnlyLeaseBased
)
// Possible values for CampaignType
const (
// campaignPreElection represents the first phase of a normal election when
// Config.PreVote is true.
campaignPreElection CampaignType = "CampaignPreElection"
// campaignElection represents a normal (time-based) election (the second phase
// of the election when Config.PreVote is true).
campaignElection CampaignType = "CampaignElection"
// campaignTransfer represents the type of leader transfer
campaignTransfer CampaignType = "CampaignTransfer"
)
const noLimit = math.MaxUint64
// ErrProposalDropped is returned when the proposal is ignored by some cases,
// so that the proposer can be notified and fail fast.
var ErrProposalDropped = errors.New("raft proposal dropped")
// lockedRand is a small wrapper around rand.Rand to provide
// synchronization among multiple raft groups. Only the methods needed
// by the code are exposed (e.g. Intn).
type lockedRand struct {
mu sync.Mutex
}
func (r *lockedRand) Intn(n int) int {
r.mu.Lock()
v, _ := rand.Int(rand.Reader, big.NewInt(int64(n)))
r.mu.Unlock()
return int(v.Int64())
}
var globalRand = &lockedRand{}
// CampaignType represents the type of campaigning
// the reason we use the type of string instead of uint64
// is because it's simpler to compare and fill in raft entries
type CampaignType string
// StateType represents the role of a node in a cluster.
type StateType uint64
var stmap = [...]string{
"StateFollower",
"StateCandidate",
"StateLeader",
"StatePreCandidate",
}
func (st StateType) String() string {
return stmap[st]
}
// Config contains the parameters to start a raft.
type Config struct {
// ID is the identity of the local raft. ID cannot be 0.
ID uint64
// ElectionTick is the number of Node.Tick invocations that must pass between
// elections. That is, if a follower does not receive any message from the
// leader of current term before ElectionTick has elapsed, it will become
// candidate and start an election. ElectionTick must be greater than
// HeartbeatTick. We suggest ElectionTick = 10 * HeartbeatTick to avoid
// unnecessary leader switching.
ElectionTick int
// HeartbeatTick is the number of Node.Tick invocations that must pass between
// heartbeats. That is, a leader sends heartbeat messages to maintain its
// leadership every HeartbeatTick ticks.
HeartbeatTick int
// Storage is the storage for raft. raft generates entries and states to be
// stored in storage. raft reads the persisted entries and states out of
// Storage when it needs. raft reads out the previous state and configuration
// out of storage when restarting.
Storage Storage
// Applied is the last applied index. It should only be set when restarting
// raft. raft will not return entries to the application smaller or equal to
// Applied. If Applied is unset when restarting, raft might return previous
// applied entries. This is a very application dependent configuration.
Applied uint64
// AsyncStorageWrites configures the raft node to write to its local storage
// (raft log and state machine) using a request/response message passing
// interface instead of the default Ready/Advance function call interface.
// Local storage messages can be pipelined and processed asynchronously
// (with respect to Ready iteration), facilitating reduced interference
// between Raft proposals and increased batching of log appends and state
// machine application. As a result, use of asynchronous storage writes can
// reduce end-to-end commit latency and increase maximum throughput.
//
// When true, the Ready.Message slice will include MsgStorageAppend and
// MsgStorageApply messages. The messages will target a LocalAppendThread
// and a LocalApplyThread, respectively. Messages to the same target must be
// reliably processed in order. In other words, they can't be dropped (like
// messages over the network) and those targeted at the same thread can't be
// reordered. Messages to different targets can be processed in any order.
//
// MsgStorageAppend carries Raft log entries to append, election votes /
// term changes / updated commit indexes to persist, and snapshots to apply.
// All writes performed in service of a MsgStorageAppend must be durable
// before response messages are delivered. However, if the MsgStorageAppend
// carries no response messages, durability is not required. The message
// assumes the role of the Entries, HardState, and Snapshot fields in Ready.
//
// MsgStorageApply carries committed entries to apply. Writes performed in
// service of a MsgStorageApply need not be durable before response messages
// are delivered. The message assumes the role of the CommittedEntries field
// in Ready.
//
// Local messages each carry one or more response messages which should be
// delivered after the corresponding storage write has been completed. These
// responses may target the same node or may target other nodes. The storage
// threads are not responsible for understanding the response messages, only
// for delivering them to the correct target after performing the storage
// write.
AsyncStorageWrites bool
// MaxSizePerMsg limits the max byte size of each append message. Smaller
// value lowers the raft recovery cost(initial probing and message lost
// during normal operation). On the other side, it might affect the
// throughput during normal replication. Note: math.MaxUint64 for unlimited,
// 0 for at most one entry per message.
MaxSizePerMsg uint64
// MaxCommittedSizePerReady limits the size of the committed entries which
// can be applying at the same time.
//
// Despite its name (preserved for compatibility), this quota applies across
// Ready structs to encompass all outstanding entries in unacknowledged
// MsgStorageApply messages when AsyncStorageWrites is enabled.
MaxCommittedSizePerReady uint64
// MaxUncommittedEntriesSize limits the aggregate byte size of the
// uncommitted entries that may be appended to a leader's log. Once this
// limit is exceeded, proposals will begin to return ErrProposalDropped
// errors. Note: 0 for no limit.
MaxUncommittedEntriesSize uint64
// MaxInflightMsgs limits the max number of in-flight append messages during
// optimistic replication phase. The application transportation layer usually
// has its own sending buffer over TCP/UDP. Setting MaxInflightMsgs to avoid
// overflowing that sending buffer. TODO (xiangli): feedback to application to
// limit the proposal rate?
MaxInflightMsgs int
// MaxInflightBytes limits the number of in-flight bytes in append messages.
// Complements MaxInflightMsgs. Ignored if zero.
//
// This effectively bounds the bandwidth-delay product. Note that especially
// in high-latency deployments setting this too low can lead to a dramatic
// reduction in throughput. For example, with a peer that has a round-trip
// latency of 100ms to the leader and this setting is set to 1 MB, there is a
// throughput limit of 10 MB/s for this group. With RTT of 400ms, this drops
// to 2.5 MB/s. See Little's law to understand the maths behind.
MaxInflightBytes uint64
// CheckQuorum specifies if the leader should check quorum activity. Leader
// steps down when quorum is not active for an electionTimeout.
CheckQuorum bool
// PreVote enables the Pre-Vote algorithm described in raft thesis section
// 9.6. This prevents disruption when a node that has been partitioned away
// rejoins the cluster.
PreVote bool
// ReadOnlyOption specifies how the read only request is processed.
//
// ReadOnlySafe guarantees the linearizability of the read only request by
// communicating with the quorum. It is the default and suggested option.
//
// ReadOnlyLeaseBased ensures linearizability of the read only request by
// relying on the leader lease. It can be affected by clock drift.
// If the clock drift is unbounded, leader might keep the lease longer than it
// should (clock can move backward/pause without any bound). ReadIndex is not safe
// in that case.
// CheckQuorum MUST be enabled if ReadOnlyOption is ReadOnlyLeaseBased.
ReadOnlyOption ReadOnlyOption
// Logger is the logger used for raft log. For multinode which can host
// multiple raft group, each raft group can have its own logger
Logger Logger
// DisableProposalForwarding set to true means that followers will drop
// proposals, rather than forwarding them to the leader. One use case for
// this feature would be in a situation where the Raft leader is used to
// compute the data of a proposal, for example, adding a timestamp from a
// hybrid logical clock to data in a monotonically increasing way. Forwarding
// should be disabled to prevent a follower with an inaccurate hybrid
// logical clock from assigning the timestamp and then forwarding the data
// to the leader.
DisableProposalForwarding bool
// DisableConfChangeValidation turns off propose-time verification of
// configuration changes against the currently active configuration of the
// raft instance. These checks are generally sensible (cannot leave a joint
// config unless in a joint config, et cetera) but they have false positives
// because the active configuration may not be the most recent
// configuration. This is because configurations are activated during log
// application, and even the leader can trail log application by an
// unbounded number of entries.
// Symmetrically, the mechanism has false negatives - because the check may
// not run against the "actual" config that will be the predecessor of the
// newly proposed one, the check may pass but the new config may be invalid
// when it is being applied. In other words, the checks are best-effort.
//
// Users should *not* use this option unless they have a reliable mechanism
// (above raft) that serializes and verifies configuration changes. If an
// invalid configuration change enters the log and gets applied, a panic
// will result.
//
// This option may be removed once false positives are no longer possible.
// See: https://github.com/etcd-io/raft/issues/80
DisableConfChangeValidation bool
// StepDownOnRemoval makes the leader step down when it is removed from the
// group or demoted to a learner.
//
// This behavior will become unconditional in the future. See:
// https://github.com/etcd-io/raft/issues/83
StepDownOnRemoval bool
// raft state tracer
TraceLogger TraceLogger
}
func (c *Config) validate() error {
if c.ID == None {
return errors.New("cannot use none as id")
}
if IsLocalMsgTarget(c.ID) {
return errors.New("cannot use local target as id")
}
if c.HeartbeatTick <= 0 {
return errors.New("heartbeat tick must be greater than 0")
}
if c.ElectionTick <= c.HeartbeatTick {
return errors.New("election tick must be greater than heartbeat tick")
}
if c.Storage == nil {
return errors.New("storage cannot be nil")
}
if c.MaxUncommittedEntriesSize == 0 {
c.MaxUncommittedEntriesSize = noLimit
}
// default MaxCommittedSizePerReady to MaxSizePerMsg because they were
// previously the same parameter.
if c.MaxCommittedSizePerReady == 0 {
c.MaxCommittedSizePerReady = c.MaxSizePerMsg
}
if c.MaxInflightMsgs <= 0 {
return errors.New("max inflight messages must be greater than 0")
}
if c.MaxInflightBytes == 0 {
c.MaxInflightBytes = noLimit
} else if c.MaxInflightBytes < c.MaxSizePerMsg {
return errors.New("max inflight bytes must be >= max message size")
}
if c.Logger == nil {
c.Logger = getLogger()
}
if c.ReadOnlyOption == ReadOnlyLeaseBased && !c.CheckQuorum {
return errors.New("CheckQuorum must be enabled when ReadOnlyOption is ReadOnlyLeaseBased")
}
return nil
}
type raft struct {
id uint64
Term uint64
Vote uint64
readStates []ReadState
// the log
raftLog *raftLog
maxMsgSize entryEncodingSize
maxUncommittedSize entryPayloadSize
trk tracker.ProgressTracker
state StateType
// isLearner is true if the local raft node is a learner.
isLearner bool
// msgs contains the list of messages that should be sent out immediately to
// other nodes.
//
// Messages in this list must target other nodes.
msgs []pb.Message
// msgsAfterAppend contains the list of messages that should be sent after
// the accumulated unstable state (e.g. term, vote, []entry, and snapshot)
// has been persisted to durable storage. This includes waiting for any
// unstable state that is already in the process of being persisted (i.e.
// has already been handed out in a prior Ready struct) to complete.
//
// Messages in this list may target other nodes or may target this node.
//
// Messages in this list have the type MsgAppResp, MsgVoteResp, or
// MsgPreVoteResp. See the comment in raft.send for details.
msgsAfterAppend []pb.Message
// the leader id
lead uint64
// leadTransferee is id of the leader transfer target when its value is not zero.
// Follow the procedure defined in raft thesis 3.10.
leadTransferee uint64
// Only one conf change may be pending (in the log, but not yet
// applied) at a time. This is enforced via pendingConfIndex, which
// is set to a value >= the log index of the latest pending
// configuration change (if any). Config changes are only allowed to
// be proposed if the leader's applied index is greater than this
// value.
pendingConfIndex uint64
// disableConfChangeValidation is Config.DisableConfChangeValidation,
// see there for details.
disableConfChangeValidation bool
// an estimate of the size of the uncommitted tail of the Raft log. Used to
// prevent unbounded log growth. Only maintained by the leader. Reset on
// term changes.
uncommittedSize entryPayloadSize
readOnly *readOnly
// number of ticks since it reached last electionTimeout when it is leader
// or candidate.
// number of ticks since it reached last electionTimeout or received a
// valid message from current leader when it is a follower.
electionElapsed int
// number of ticks since it reached last heartbeatTimeout.
// only leader keeps heartbeatElapsed.
heartbeatElapsed int
checkQuorum bool
preVote bool
heartbeatTimeout int
electionTimeout int
// randomizedElectionTimeout is a random number between
// [electiontimeout, 2 * electiontimeout - 1]. It gets reset
// when raft changes its state to follower or candidate.
randomizedElectionTimeout int
disableProposalForwarding bool
stepDownOnRemoval bool
tick func()
step stepFunc
logger Logger
// pendingReadIndexMessages is used to store messages of type MsgReadIndex
// that can't be answered as new leader didn't committed any log in
// current term. Those will be handled as fast as first log is committed in
// current term.
pendingReadIndexMessages []pb.Message
traceLogger TraceLogger
}
func newRaft(c *Config) *raft {
if err := c.validate(); err != nil {
panic(err.Error())
}
raftlog := newLogWithSize(c.Storage, c.Logger, entryEncodingSize(c.MaxCommittedSizePerReady))
hs, cs, err := c.Storage.InitialState()
if err != nil {
panic(err) // TODO(bdarnell)
}
r := &raft{
id: c.ID,
lead: None,
isLearner: false,
raftLog: raftlog,
maxMsgSize: entryEncodingSize(c.MaxSizePerMsg),
maxUncommittedSize: entryPayloadSize(c.MaxUncommittedEntriesSize),
trk: tracker.MakeProgressTracker(c.MaxInflightMsgs, c.MaxInflightBytes),
electionTimeout: c.ElectionTick,
heartbeatTimeout: c.HeartbeatTick,
logger: c.Logger,
checkQuorum: c.CheckQuorum,
preVote: c.PreVote,
readOnly: newReadOnly(c.ReadOnlyOption),
disableProposalForwarding: c.DisableProposalForwarding,
disableConfChangeValidation: c.DisableConfChangeValidation,
stepDownOnRemoval: c.StepDownOnRemoval,
traceLogger: c.TraceLogger,
}
traceInitState(r)
lastID := r.raftLog.lastEntryID()
cfg, trk, err := confchange.Restore(confchange.Changer{
Tracker: r.trk,
LastIndex: lastID.index,
}, cs)
if err != nil {
panic(err)
}
assertConfStatesEquivalent(r.logger, cs, r.switchToConfig(cfg, trk))
if !IsEmptyHardState(hs) {
r.loadState(hs)
}
if c.Applied > 0 {
raftlog.appliedTo(c.Applied, 0 /* size */)
}
r.becomeFollower(r.Term, None)
var nodesStrs []string
for _, n := range r.trk.VoterNodes() {
nodesStrs = append(nodesStrs, fmt.Sprintf("%x", n))
}
// TODO(pav-kv): it should be ok to simply print %+v for lastID.
r.logger.Infof("newRaft %x [peers: [%s], term: %d, commit: %d, applied: %d, lastindex: %d, lastterm: %d]",
r.id, strings.Join(nodesStrs, ","), r.Term, r.raftLog.committed, r.raftLog.applied, lastID.index, lastID.term)
return r
}
func (r *raft) hasLeader() bool { return r.lead != None }
func (r *raft) softState() SoftState { return SoftState{Lead: r.lead, RaftState: r.state} }
func (r *raft) hardState() pb.HardState {
return pb.HardState{
Term: r.Term,
Vote: r.Vote,
Commit: r.raftLog.committed,
}
}
// send schedules persisting state to a stable storage and AFTER that
// sending the message (as part of next Ready message processing).
func (r *raft) send(m pb.Message) {
if m.From == None {
m.From = r.id
}
if m.Type == pb.MsgVote || m.Type == pb.MsgVoteResp || m.Type == pb.MsgPreVote || m.Type == pb.MsgPreVoteResp {
if m.Term == 0 {
// All {pre-,}campaign messages need to have the term set when
// sending.
// - MsgVote: m.Term is the term the node is campaigning for,
// non-zero as we increment the term when campaigning.
// - MsgVoteResp: m.Term is the new r.Term if the MsgVote was
// granted, non-zero for the same reason MsgVote is
// - MsgPreVote: m.Term is the term the node will campaign,
// non-zero as we use m.Term to indicate the next term we'll be
// campaigning for
// - MsgPreVoteResp: m.Term is the term received in the original
// MsgPreVote if the pre-vote was granted, non-zero for the
// same reasons MsgPreVote is
r.logger.Panicf("term should be set when sending %s", m.Type)
}
} else {
if m.Term != 0 {
r.logger.Panicf("term should not be set when sending %s (was %d)", m.Type, m.Term)
}
// do not attach term to MsgProp, MsgReadIndex
// proposals are a way to forward to the leader and
// should be treated as local message.
// MsgReadIndex is also forwarded to leader.
if m.Type != pb.MsgProp && m.Type != pb.MsgReadIndex {
m.Term = r.Term
}
}
if m.Type == pb.MsgAppResp || m.Type == pb.MsgVoteResp || m.Type == pb.MsgPreVoteResp {
// If async storage writes are enabled, messages added to the msgs slice
// are allowed to be sent out before unstable state (e.g. log entry
// writes and election votes) have been durably synced to the local
// disk.
//
// For most message types, this is not an issue. However, response
// messages that relate to "voting" on either leader election or log
// appends require durability before they can be sent. It would be
// incorrect to publish a vote in an election before that vote has been
// synced to stable storage locally. Similarly, it would be incorrect to
// acknowledge a log append to the leader before that entry has been
// synced to stable storage locally.
//
// Per the Raft thesis, section 3.8 Persisted state and server restarts:
//
// > Raft servers must persist enough information to stable storage to
// > survive server restarts safely. In particular, each server persists
// > its current term and vote; this is necessary to prevent the server
// > from voting twice in the same term or replacing log entries from a
// > newer leader with those from a deposed leader. Each server also
// > persists new log entries before they are counted towards the entries’
// > commitment; this prevents committed entries from being lost or
// > “uncommitted” when servers restart
//
// To enforce this durability requirement, these response messages are
// queued to be sent out as soon as the current collection of unstable
// state (the state that the response message was predicated upon) has
// been durably persisted. This unstable state may have already been
// passed to a Ready struct whose persistence is in progress or may be
// waiting for the next Ready struct to begin being written to Storage.
// These messages must wait for all of this state to be durable before
// being published.
//
// Rejected responses (m.Reject == true) present an interesting case
// where the durability requirement is less unambiguous. A rejection may
// be predicated upon unstable state. For instance, a node may reject a
// vote for one peer because it has already begun syncing its vote for
// another peer. Or it may reject a vote from one peer because it has
// unstable log entries that indicate that the peer is behind on its
// log. In these cases, it is likely safe to send out the rejection
// response immediately without compromising safety in the presence of a
// server restart. However, because these rejections are rare and
// because the safety of such behavior has not been formally verified,
// we err on the side of safety and omit a `&& !m.Reject` condition
// above.
r.msgsAfterAppend = append(r.msgsAfterAppend, m)
traceSendMessage(r, &m)
} else {
if m.To == r.id {
r.logger.Panicf("message should not be self-addressed when sending %s", m.Type)
}
r.msgs = append(r.msgs, m)
traceSendMessage(r, &m)
}
}
// sendAppend sends an append RPC with new entries (if any) and the
// current commit index to the given peer.
func (r *raft) sendAppend(to uint64) {
r.maybeSendAppend(to, true)
}
// maybeSendAppend sends an append RPC with new entries to the given peer,
// if necessary. Returns true if a message was sent. The sendIfEmpty
// argument controls whether messages with no entries will be sent
// ("empty" messages are useful to convey updated Commit indexes, but
// are undesirable when we're sending multiple messages in a batch).
//
// TODO(pav-kv): make invocation of maybeSendAppend stateless. The Progress
// struct contains all the state necessary for deciding whether to send a
// message.
func (r *raft) maybeSendAppend(to uint64, sendIfEmpty bool) bool {
pr := r.trk.Progress[to]
if pr.IsPaused() {
return false
}
prevIndex := pr.Next - 1
prevTerm, err := r.raftLog.term(prevIndex)
if err != nil {
// The log probably got truncated at >= pr.Next, so we can't catch up the
// follower log anymore. Send a snapshot instead.
return r.maybeSendSnapshot(to, pr)
}
var ents []pb.Entry
// In a throttled StateReplicate only send empty MsgApp, to ensure progress.
// Otherwise, if we had a full Inflights and all inflight messages were in
// fact dropped, replication to that follower would stall. Instead, an empty
// MsgApp will eventually reach the follower (heartbeats responses prompt the
// leader to send an append), allowing it to be acked or rejected, both of
// which will clear out Inflights.
if pr.State != tracker.StateReplicate || !pr.Inflights.Full() {
ents, err = r.raftLog.entries(pr.Next, r.maxMsgSize)
}
if len(ents) == 0 && !sendIfEmpty {
return false
}
// TODO(pav-kv): move this check up to where err is returned.
if err != nil { // send a snapshot if we failed to get the entries
return r.maybeSendSnapshot(to, pr)
}
// Send the actual MsgApp otherwise, and update the progress accordingly.
r.send(pb.Message{
To: to,
Type: pb.MsgApp,
Index: prevIndex,
LogTerm: prevTerm,
Entries: ents,
Commit: r.raftLog.committed,
})
pr.SentEntries(len(ents), uint64(payloadsSize(ents)))
pr.SentCommit(r.raftLog.committed)
return true
}
// maybeSendSnapshot fetches a snapshot from Storage, and sends it to the given
// node. Returns true iff the snapshot message has been emitted successfully.
func (r *raft) maybeSendSnapshot(to uint64, pr *tracker.Progress) bool {
if !pr.RecentActive {
r.logger.Debugf("ignore sending snapshot to %x since it is not recently active", to)
return false
}
snapshot, err := r.raftLog.snapshot()
if err != nil {
if err == ErrSnapshotTemporarilyUnavailable {
r.logger.Debugf("%x failed to send snapshot to %x because snapshot is temporarily unavailable", r.id, to)
return false
}
panic(err) // TODO(bdarnell)
}
if IsEmptySnap(snapshot) {
panic("need non-empty snapshot")
}
sindex, sterm := snapshot.Metadata.Index, snapshot.Metadata.Term
r.logger.Debugf("%x [firstindex: %d, commit: %d] sent snapshot[index: %d, term: %d] to %x [%s]",
r.id, r.raftLog.firstIndex(), r.raftLog.committed, sindex, sterm, to, pr)
pr.BecomeSnapshot(sindex)
r.logger.Debugf("%x paused sending replication messages to %x [%s]", r.id, to, pr)
r.send(pb.Message{To: to, Type: pb.MsgSnap, Snapshot: &snapshot})
return true
}
// sendHeartbeat sends a heartbeat RPC to the given peer.
func (r *raft) sendHeartbeat(to uint64, ctx []byte) {
pr := r.trk.Progress[to]
// Attach the commit as min(to.matched, r.committed).
// When the leader sends out heartbeat message,
// the receiver(follower) might not be matched with the leader
// or it might not have all the committed entries.
// The leader MUST NOT forward the follower's commit to
// an unmatched index.
commit := min(pr.Match, r.raftLog.committed)
r.send(pb.Message{
To: to,
Type: pb.MsgHeartbeat,
Commit: commit,
Context: ctx,
})
pr.SentCommit(commit)
}
// bcastAppend sends RPC, with entries to all peers that are not up-to-date
// according to the progress recorded in r.trk.
func (r *raft) bcastAppend() {
r.trk.Visit(func(id uint64, _ *tracker.Progress) {
if id == r.id {
return
}
r.sendAppend(id)
})
}
// bcastHeartbeat sends RPC, without entries to all the peers.
func (r *raft) bcastHeartbeat() {
lastCtx := r.readOnly.lastPendingRequestCtx()
if len(lastCtx) == 0 {
r.bcastHeartbeatWithCtx(nil)
} else {
r.bcastHeartbeatWithCtx([]byte(lastCtx))
}
}
func (r *raft) bcastHeartbeatWithCtx(ctx []byte) {
r.trk.Visit(func(id uint64, _ *tracker.Progress) {
if id == r.id {
return
}
r.sendHeartbeat(id, ctx)
})
}
func (r *raft) appliedTo(index uint64, size entryEncodingSize) {
oldApplied := r.raftLog.applied
newApplied := max(index, oldApplied)
r.raftLog.appliedTo(newApplied, size)
if r.trk.Config.AutoLeave && newApplied >= r.pendingConfIndex && r.state == StateLeader {
// If the current (and most recent, at least for this leader's term)
// configuration should be auto-left, initiate that now. We use a
// nil Data which unmarshals into an empty ConfChangeV2 and has the
// benefit that appendEntry can never refuse it based on its size
// (which registers as zero).
m, err := confChangeToMsg(nil)
if err != nil {
panic(err)
}
// NB: this proposal can't be dropped due to size, but can be
// dropped if a leadership transfer is in progress. We'll keep
// checking this condition on each applied entry, so either the
// leadership transfer will succeed and the new leader will leave
// the joint configuration, or the leadership transfer will fail,
// and we will propose the config change on the next advance.
if err := r.Step(m); err != nil {
r.logger.Debugf("not initiating automatic transition out of joint configuration %s: %v", r.trk.Config, err)
} else {
r.logger.Infof("initiating automatic transition out of joint configuration %s", r.trk.Config)
}
}
}
func (r *raft) appliedSnap(snap *pb.Snapshot) {
index := snap.Metadata.Index
r.raftLog.stableSnapTo(index)
r.appliedTo(index, 0 /* size */)
}
// maybeCommit attempts to advance the commit index. Returns true if the commit
// index changed (in which case the caller should call r.bcastAppend). This can
// only be called in StateLeader.
func (r *raft) maybeCommit() bool {
defer traceCommit(r)
return r.raftLog.maybeCommit(entryID{term: r.Term, index: r.trk.Committed()})
}
func (r *raft) reset(term uint64) {
if r.Term != term {
r.Term = term
r.Vote = None
}
r.lead = None
r.electionElapsed = 0
r.heartbeatElapsed = 0
r.resetRandomizedElectionTimeout()
r.abortLeaderTransfer()
r.trk.ResetVotes()
r.trk.Visit(func(id uint64, pr *tracker.Progress) {
*pr = tracker.Progress{
Match: 0,
Next: r.raftLog.lastIndex() + 1,
Inflights: tracker.NewInflights(r.trk.MaxInflight, r.trk.MaxInflightBytes),
IsLearner: pr.IsLearner,
}
if id == r.id {
pr.Match = r.raftLog.lastIndex()
}
})
r.pendingConfIndex = 0
r.uncommittedSize = 0
r.readOnly = newReadOnly(r.readOnly.option)
}
func (r *raft) appendEntry(es ...pb.Entry) (accepted bool) {
li := r.raftLog.lastIndex()
for i := range es {
es[i].Term = r.Term
es[i].Index = li + 1 + uint64(i)
}
// Track the size of this uncommitted proposal.
if !r.increaseUncommittedSize(es) {
r.logger.Warningf(
"%x appending new entries to log would exceed uncommitted entry size limit; dropping proposal",
r.id,
)
// Drop the proposal.
return false
}
traceReplicate(r, es...)
// use latest "last" index after truncate/append
li = r.raftLog.append(es...)
// The leader needs to self-ack the entries just appended once they have
// been durably persisted (since it doesn't send an MsgApp to itself). This
// response message will be added to msgsAfterAppend and delivered back to
// this node after these entries have been written to stable storage. When
// handled, this is roughly equivalent to:
//
// r.trk.Progress[r.id].MaybeUpdate(e.Index)
// if r.maybeCommit() {
// r.bcastAppend()
// }
r.send(pb.Message{To: r.id, Type: pb.MsgAppResp, Index: li})
return true
}
// tickElection is run by followers and candidates after r.electionTimeout.
func (r *raft) tickElection() {
r.electionElapsed++
if r.promotable() && r.pastElectionTimeout() {
r.electionElapsed = 0
if err := r.Step(pb.Message{From: r.id, Type: pb.MsgHup}); err != nil {
r.logger.Debugf("error occurred during election: %v", err)
}
}
}
// tickHeartbeat is run by leaders to send a MsgBeat after r.heartbeatTimeout.
func (r *raft) tickHeartbeat() {
r.heartbeatElapsed++
r.electionElapsed++
if r.electionElapsed >= r.electionTimeout {
r.electionElapsed = 0
if r.checkQuorum {
if err := r.Step(pb.Message{From: r.id, Type: pb.MsgCheckQuorum}); err != nil {
r.logger.Debugf("error occurred during checking sending heartbeat: %v", err)
}
}
// If current leader cannot transfer leadership in electionTimeout, it becomes leader again.
if r.state == StateLeader && r.leadTransferee != None {
r.abortLeaderTransfer()
}
}
if r.state != StateLeader {
return
}
if r.heartbeatElapsed >= r.heartbeatTimeout {
r.heartbeatElapsed = 0
if err := r.Step(pb.Message{From: r.id, Type: pb.MsgBeat}); err != nil {
r.logger.Debugf("error occurred during checking sending heartbeat: %v", err)
}
}
}
func (r *raft) becomeFollower(term uint64, lead uint64) {
r.step = stepFollower
r.reset(term)
r.tick = r.tickElection
r.lead = lead
r.state = StateFollower
r.logger.Infof("%x became follower at term %d", r.id, r.Term)
traceBecomeFollower(r)
}
func (r *raft) becomeCandidate() {
// TODO(xiangli) remove the panic when the raft implementation is stable
if r.state == StateLeader {
panic("invalid transition [leader -> candidate]")
}
r.step = stepCandidate
r.reset(r.Term + 1)
r.tick = r.tickElection
r.Vote = r.id
r.state = StateCandidate
r.logger.Infof("%x became candidate at term %d", r.id, r.Term)
traceBecomeCandidate(r)
}
func (r *raft) becomePreCandidate() {
// TODO(xiangli) remove the panic when the raft implementation is stable
if r.state == StateLeader {
panic("invalid transition [leader -> pre-candidate]")
}
// Becoming a pre-candidate changes our step functions and state,
// but doesn't change anything else. In particular it does not increase
// r.Term or change r.Vote.
r.step = stepCandidate
r.trk.ResetVotes()
r.tick = r.tickElection
r.lead = None
r.state = StatePreCandidate
r.logger.Infof("%x became pre-candidate at term %d", r.id, r.Term)
}
func (r *raft) becomeLeader() {
// TODO(xiangli) remove the panic when the raft implementation is stable
if r.state == StateFollower {
panic("invalid transition [follower -> leader]")
}
r.step = stepLeader
r.reset(r.Term)
r.tick = r.tickHeartbeat
r.lead = r.id
r.state = StateLeader
// Followers enter replicate mode when they've been successfully probed
// (perhaps after having received a snapshot as a result). The leader is
// trivially in this state. Note that r.reset() has initialized this
// progress with the last index already.
pr := r.trk.Progress[r.id]
pr.BecomeReplicate()
// The leader always has RecentActive == true; MsgCheckQuorum makes sure to
// preserve this.
pr.RecentActive = true
// Conservatively set the pendingConfIndex to the last index in the
// log. There may or may not be a pending config change, but it's
// safe to delay any future proposals until we commit all our
// pending log entries, and scanning the entire tail of the log
// could be expensive.
r.pendingConfIndex = r.raftLog.lastIndex()
traceBecomeLeader(r)
emptyEnt := pb.Entry{Data: nil}
if !r.appendEntry(emptyEnt) {
// This won't happen because we just called reset() above.
r.logger.Panic("empty entry was dropped")
}
// The payloadSize of an empty entry is 0 (see TestPayloadSizeOfEmptyEntry),
// so the preceding log append does not count against the uncommitted log
// quota of the new leader. In other words, after the call to appendEntry,
// r.uncommittedSize is still 0.
r.logger.Infof("%x became leader at term %d", r.id, r.Term)
}
func (r *raft) hup(t CampaignType) {
if r.state == StateLeader {
r.logger.Debugf("%x ignoring MsgHup because already leader", r.id)
return
}
if !r.promotable() {
r.logger.Warningf("%x is unpromotable and can not campaign", r.id)
return
}
if r.hasUnappliedConfChanges() {
r.logger.Warningf("%x cannot campaign at term %d since there are still pending configuration changes to apply", r.id, r.Term)
return
}
r.logger.Infof("%x is starting a new election at term %d", r.id, r.Term)
r.campaign(t)
}
// errBreak is a sentinel error used to break a callback-based loop.
var errBreak = errors.New("break")
func (r *raft) hasUnappliedConfChanges() bool {
if r.raftLog.applied >= r.raftLog.committed { // in fact applied == committed
return false
}
found := false
// Scan all unapplied committed entries to find a config change. Paginate the
// scan, to avoid a potentially unlimited memory spike.
lo, hi := r.raftLog.applied+1, r.raftLog.committed+1
// Reuse the maxApplyingEntsSize limit because it is used for similar purposes
// (limiting the read of unapplied committed entries) when raft sends entries
// via the Ready struct for application.
// TODO(pavelkalinnikov): find a way to budget memory/bandwidth for this scan
// outside the raft package.
pageSize := r.raftLog.maxApplyingEntsSize
if err := r.raftLog.scan(lo, hi, pageSize, func(ents []pb.Entry) error {
for i := range ents {
if ents[i].Type == pb.EntryConfChange || ents[i].Type == pb.EntryConfChangeV2 {
found = true
return errBreak
}
}
return nil
}); err != nil && err != errBreak {
r.logger.Panicf("error scanning unapplied entries [%d, %d): %v", lo, hi, err)
}
return found
}
// campaign transitions the raft instance to candidate state. This must only be
// called after verifying that this is a legitimate transition.
func (r *raft) campaign(t CampaignType) {
if !r.promotable() {
// This path should not be hit (callers are supposed to check), but
// better safe than sorry.
r.logger.Warningf("%x is unpromotable; campaign() should have been called", r.id)
}
var term uint64
var voteMsg pb.MessageType
if t == campaignPreElection {
r.becomePreCandidate()
voteMsg = pb.MsgPreVote
// PreVote RPCs are sent for the next term before we've incremented r.Term.
term = r.Term + 1
} else {
r.becomeCandidate()
voteMsg = pb.MsgVote
term = r.Term
}
var ids []uint64
{
idMap := r.trk.Voters.IDs()
ids = make([]uint64, 0, len(idMap))
for id := range idMap {
ids = append(ids, id)
}
slices.Sort(ids)
}
for _, id := range ids {
if id == r.id {
// The candidate votes for itself and should account for this self
// vote once the vote has been durably persisted (since it doesn't
// send a MsgVote to itself). This response message will be added to
// msgsAfterAppend and delivered back to this node after the vote
// has been written to stable storage.
r.send(pb.Message{To: id, Term: term, Type: voteRespMsgType(voteMsg)})
continue
}
// TODO(pav-kv): it should be ok to simply print %+v for the lastEntryID.
last := r.raftLog.lastEntryID()
r.logger.Infof("%x [logterm: %d, index: %d] sent %s request to %x at term %d",
r.id, last.term, last.index, voteMsg, id, r.Term)
var ctx []byte
if t == campaignTransfer {
ctx = []byte(t)
}
r.send(pb.Message{To: id, Term: term, Type: voteMsg, Index: last.index, LogTerm: last.term, Context: ctx})
}
}
func (r *raft) poll(id uint64, t pb.MessageType, v bool) (granted int, rejected int, result quorum.VoteResult) {
if v {
r.logger.Infof("%x received %s from %x at term %d", r.id, t, id, r.Term)
} else {
r.logger.Infof("%x received %s rejection from %x at term %d", r.id, t, id, r.Term)
}
r.trk.RecordVote(id, v)
return r.trk.TallyVotes()
}
func (r *raft) Step(m pb.Message) error {
traceReceiveMessage(r, &m)
// Handle the message term, which may result in our stepping down to a follower.
switch {
case m.Term == 0:
// local message
case m.Term > r.Term:
if m.Type == pb.MsgVote || m.Type == pb.MsgPreVote {
force := bytes.Equal(m.Context, []byte(campaignTransfer))
inLease := r.checkQuorum && r.lead != None && r.electionElapsed < r.electionTimeout
if !force && inLease {
// If a server receives a RequestVote request within the minimum election timeout
// of hearing from a current leader, it does not update its term or grant its vote
last := r.raftLog.lastEntryID()
// TODO(pav-kv): it should be ok to simply print the %+v of the lastEntryID.
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] ignored %s from %x [logterm: %d, index: %d] at term %d: lease is not expired (remaining ticks: %d)",
r.id, last.term, last.index, r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term, r.electionTimeout-r.electionElapsed)
return nil
}
}
switch {
case m.Type == pb.MsgPreVote:
// Never change our term in response to a PreVote
case m.Type == pb.MsgPreVoteResp && !m.Reject:
// We send pre-vote requests with a term in our future. If the
// pre-vote is granted, we will increment our term when we get a
// quorum. If it is not, the term comes from the node that
// rejected our vote so we should become a follower at the new
// term.
default:
r.logger.Infof("%x [term: %d] received a %s message with higher term from %x [term: %d]",
r.id, r.Term, m.Type, m.From, m.Term)
if m.Type == pb.MsgApp || m.Type == pb.MsgHeartbeat || m.Type == pb.MsgSnap {
r.becomeFollower(m.Term, m.From)
} else {
r.becomeFollower(m.Term, None)
}
}
case m.Term < r.Term:
if (r.checkQuorum || r.preVote) && (m.Type == pb.MsgHeartbeat || m.Type == pb.MsgApp) {
// We have received messages from a leader at a lower term. It is possible
// that these messages were simply delayed in the network, but this could
// also mean that this node has advanced its term number during a network
// partition, and it is now unable to either win an election or to rejoin
// the majority on the old term. If checkQuorum is false, this will be
// handled by incrementing term numbers in response to MsgVote with a
// higher term, but if checkQuorum is true we may not advance the term on
// MsgVote and must generate other messages to advance the term. The net
// result of these two features is to minimize the disruption caused by
// nodes that have been removed from the cluster's configuration: a
// removed node will send MsgVotes (or MsgPreVotes) which will be ignored,
// but it will not receive MsgApp or MsgHeartbeat, so it will not create
// disruptive term increases, by notifying leader of this node's activeness.
// The above comments also true for Pre-Vote
//
// When follower gets isolated, it soon starts an election ending
// up with a higher term than leader, although it won't receive enough
// votes to win the election. When it regains connectivity, this response
// with "pb.MsgAppResp" of higher term would force leader to step down.
// However, this disruption is inevitable to free this stuck node with
// fresh election. This can be prevented with Pre-Vote phase.
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp})
} else if m.Type == pb.MsgPreVote {
// Before Pre-Vote enable, there may have candidate with higher term,
// but less log. After update to Pre-Vote, the cluster may deadlock if
// we drop messages with a lower term.
last := r.raftLog.lastEntryID()
// TODO(pav-kv): it should be ok to simply print %+v of the lastEntryID.
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] rejected %s from %x [logterm: %d, index: %d] at term %d",
r.id, last.term, last.index, r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term)
r.send(pb.Message{To: m.From, Term: r.Term, Type: pb.MsgPreVoteResp, Reject: true})
} else if m.Type == pb.MsgStorageAppendResp {
if m.Index != 0 {
// Don't consider the appended log entries to be stable because
// they may have been overwritten in the unstable log during a
// later term. See the comment in newStorageAppendResp for more
// about this race.
r.logger.Infof("%x [term: %d] ignored entry appends from a %s message with lower term [term: %d]",
r.id, r.Term, m.Type, m.Term)
}
if m.Snapshot != nil {
// Even if the snapshot applied under a different term, its
// application is still valid. Snapshots carry committed
// (term-independent) state.
r.appliedSnap(m.Snapshot)
}
} else {
// ignore other cases
r.logger.Infof("%x [term: %d] ignored a %s message with lower term from %x [term: %d]",
r.id, r.Term, m.Type, m.From, m.Term)
}
return nil
}
switch m.Type {
case pb.MsgHup:
if r.preVote {
r.hup(campaignPreElection)
} else {
r.hup(campaignElection)
}
case pb.MsgStorageAppendResp:
if m.Index != 0 {
r.raftLog.stableTo(entryID{term: m.LogTerm, index: m.Index})
}
if m.Snapshot != nil {
r.appliedSnap(m.Snapshot)
}
case pb.MsgStorageApplyResp:
if len(m.Entries) > 0 {
index := m.Entries[len(m.Entries)-1].Index
r.appliedTo(index, entsSize(m.Entries))
r.reduceUncommittedSize(payloadsSize(m.Entries))
}
case pb.MsgVote, pb.MsgPreVote:
// We can vote if this is a repeat of a vote we've already cast...
canVote := r.Vote == m.From ||
// ...we haven't voted and we don't think there's a leader yet in this term...
(r.Vote == None && r.lead == None) ||
// ...or this is a PreVote for a future term...
(m.Type == pb.MsgPreVote && m.Term > r.Term)
// ...and we believe the candidate is up to date.
lastID := r.raftLog.lastEntryID()
candLastID := entryID{term: m.LogTerm, index: m.Index}
if canVote && r.raftLog.isUpToDate(candLastID) {
// Note: it turns out that that learners must be allowed to cast votes.
// This seems counter- intuitive but is necessary in the situation in which
// a learner has been promoted (i.e. is now a voter) but has not learned
// about this yet.
// For example, consider a group in which id=1 is a learner and id=2 and
// id=3 are voters. A configuration change promoting 1 can be committed on
// the quorum `{2,3}` without the config change being appended to the
// learner's log. If the leader (say 2) fails, there are de facto two
// voters remaining. Only 3 can win an election (due to its log containing
// all committed entries), but to do so it will need 1 to vote. But 1
// considers itself a learner and will continue to do so until 3 has
// stepped up as leader, replicates the conf change to 1, and 1 applies it.
// Ultimately, by receiving a request to vote, the learner realizes that
// the candidate believes it to be a voter, and that it should act
// accordingly. The candidate's config may be stale, too; but in that case
// it won't win the election, at least in the absence of the bug discussed
// in:
// https://github.com/etcd-io/etcd/issues/7625#issuecomment-488798263.
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] cast %s for %x [logterm: %d, index: %d] at term %d",
r.id, lastID.term, lastID.index, r.Vote, m.Type, m.From, candLastID.term, candLastID.index, r.Term)
// When responding to Msg{Pre,}Vote messages we include the term
// from the message, not the local term. To see why, consider the
// case where a single node was previously partitioned away and
// it's local term is now out of date. If we include the local term
// (recall that for pre-votes we don't update the local term), the
// (pre-)campaigning node on the other end will proceed to ignore
// the message (it ignores all out of date messages).
// The term in the original message and current local term are the
// same in the case of regular votes, but different for pre-votes.
r.send(pb.Message{To: m.From, Term: m.Term, Type: voteRespMsgType(m.Type)})
if m.Type == pb.MsgVote {
// Only record real votes.
r.electionElapsed = 0
r.Vote = m.From
}
} else {
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] rejected %s from %x [logterm: %d, index: %d] at term %d",
r.id, lastID.term, lastID.index, r.Vote, m.Type, m.From, candLastID.term, candLastID.index, r.Term)
r.send(pb.Message{To: m.From, Term: r.Term, Type: voteRespMsgType(m.Type), Reject: true})
}
default:
err := r.step(r, m)
if err != nil {
return err
}
}
return nil
}
type stepFunc func(r *raft, m pb.Message) error
func stepLeader(r *raft, m pb.Message) error {
// These message types do not require any progress for m.From.
switch m.Type {
case pb.MsgBeat:
r.bcastHeartbeat()
return nil
case pb.MsgCheckQuorum:
if !r.trk.QuorumActive() {
r.logger.Warningf("%x stepped down to follower since quorum is not active", r.id)
r.becomeFollower(r.Term, None)
}
// Mark everyone (but ourselves) as inactive in preparation for the next
// CheckQuorum.
r.trk.Visit(func(id uint64, pr *tracker.Progress) {
if id != r.id {
pr.RecentActive = false
}
})
return nil
case pb.MsgProp:
if len(m.Entries) == 0 {
r.logger.Panicf("%x stepped empty MsgProp", r.id)
}
if r.trk.Progress[r.id] == nil {
// If we are not currently a member of the range (i.e. this node
// was removed from the configuration while serving as leader),
// drop any new proposals.
return ErrProposalDropped
}
if r.leadTransferee != None {
r.logger.Debugf("%x [term %d] transfer leadership to %x is in progress; dropping proposal", r.id, r.Term, r.leadTransferee)
return ErrProposalDropped
}
for i := range m.Entries {
e := &m.Entries[i]
var cc pb.ConfChangeI
if e.Type == pb.EntryConfChange {
var ccc pb.ConfChange
if err := ccc.Unmarshal(e.Data); err != nil {
panic(err)
}
cc = ccc
} else if e.Type == pb.EntryConfChangeV2 {
var ccc pb.ConfChangeV2
if err := ccc.Unmarshal(e.Data); err != nil {
panic(err)
}
cc = ccc
}
if cc != nil {
alreadyPending := r.pendingConfIndex > r.raftLog.applied
alreadyJoint := len(r.trk.Config.Voters[1]) > 0
wantsLeaveJoint := len(cc.AsV2().Changes) == 0
var failedCheck string
if alreadyPending {
failedCheck = fmt.Sprintf("possible unapplied conf change at index %d (applied to %d)", r.pendingConfIndex, r.raftLog.applied)
} else if alreadyJoint && !wantsLeaveJoint {
failedCheck = "must transition out of joint config first"
} else if !alreadyJoint && wantsLeaveJoint {
failedCheck = "not in joint state; refusing empty conf change"
}
if failedCheck != "" && !r.disableConfChangeValidation {
r.logger.Infof("%x ignoring conf change %v at config %s: %s", r.id, cc, r.trk.Config, failedCheck)
m.Entries[i] = pb.Entry{Type: pb.EntryNormal}
} else {
r.pendingConfIndex = r.raftLog.lastIndex() + uint64(i) + 1
traceChangeConfEvent(cc, r)
}
}
}
if !r.appendEntry(m.Entries...) {
return ErrProposalDropped
}
r.bcastAppend()
return nil
case pb.MsgReadIndex:
// only one voting member (the leader) in the cluster
if r.trk.IsSingleton() {
if resp := r.responseToReadIndexReq(m, r.raftLog.committed); resp.To != None {
r.send(resp)
}
return nil
}
// Postpone read only request when this leader has not committed
// any log entry at its term.
if !r.committedEntryInCurrentTerm() {
r.pendingReadIndexMessages = append(r.pendingReadIndexMessages, m)
return nil
}
sendMsgReadIndexResponse(r, m)
return nil
case pb.MsgForgetLeader:
return nil // noop on leader
}
// All other message types require a progress for m.From (pr).
pr := r.trk.Progress[m.From]
if pr == nil {
r.logger.Debugf("%x no progress available for %x", r.id, m.From)
return nil
}
switch m.Type {
case pb.MsgAppResp:
// NB: this code path is also hit from (*raft).advance, where the leader steps
// an MsgAppResp to acknowledge the appended entries in the last Ready.
pr.RecentActive = true
if m.Reject {
// RejectHint is the suggested next base entry for appending (i.e.
// we try to append entry RejectHint+1 next), and LogTerm is the
// term that the follower has at index RejectHint. Older versions
// of this library did not populate LogTerm for rejections and it
// is zero for followers with an empty log.
//
// Under normal circumstances, the leader's log is longer than the
// follower's and the follower's log is a prefix of the leader's
// (i.e. there is no divergent uncommitted suffix of the log on the
// follower). In that case, the first probe reveals where the
// follower's log ends (RejectHint=follower's last index) and the
// subsequent probe succeeds.
//
// However, when networks are partitioned or systems overloaded,
// large divergent log tails can occur. The naive attempt, probing
// entry by entry in decreasing order, will be the product of the
// length of the diverging tails and the network round-trip latency,
// which can easily result in hours of time spent probing and can
// even cause outright outages. The probes are thus optimized as
// described below.
r.logger.Debugf("%x received MsgAppResp(rejected, hint: (index %d, term %d)) from %x for index %d",
r.id, m.RejectHint, m.LogTerm, m.From, m.Index)
nextProbeIdx := m.RejectHint
if m.LogTerm > 0 {
// If the follower has an uncommitted log tail, we would end up
// probing one by one until we hit the common prefix.
//
// For example, if the leader has:
//
// idx 1 2 3 4 5 6 7 8 9
// -----------------
// term (L) 1 3 3 3 5 5 5 5 5
// term (F) 1 1 1 1 2 2
//
// Then, after sending an append anchored at (idx=9,term=5) we
// would receive a RejectHint of 6 and LogTerm of 2. Without the
// code below, we would try an append at index 6, which would
// fail again.
//
// However, looking only at what the leader knows about its own
// log and the rejection hint, it is clear that a probe at index
// 6, 5, 4, 3, and 2 must fail as well:
//
// For all of these indexes, the leader's log term is larger than
// the rejection's log term. If a probe at one of these indexes
// succeeded, its log term at that index would match the leader's,
// i.e. 3 or 5 in this example. But the follower already told the
// leader that it is still at term 2 at index 6, and since the
// log term only ever goes up (within a log), this is a contradiction.
//
// At index 1, however, the leader can draw no such conclusion,
// as its term 1 is not larger than the term 2 from the
// follower's rejection. We thus probe at 1, which will succeed
// in this example. In general, with this approach we probe at
// most once per term found in the leader's log.
//
// There is a similar mechanism on the follower (implemented in
// handleAppendEntries via a call to findConflictByTerm) that is
// useful if the follower has a large divergent uncommitted log
// tail[1], as in this example:
//
// idx 1 2 3 4 5 6 7 8 9
// -----------------
// term (L) 1 3 3 3 3 3 3 3 7
// term (F) 1 3 3 4 4 5 5 5 6
//
// Naively, the leader would probe at idx=9, receive a rejection
// revealing the log term of 6 at the follower. Since the leader's
// term at the previous index is already smaller than 6, the leader-
// side optimization discussed above is ineffective. The leader thus
// probes at index 8 and, naively, receives a rejection for the same
// index and log term 5. Again, the leader optimization does not improve
// over linear probing as term 5 is above the leader's term 3 for that
// and many preceding indexes; the leader would have to probe linearly
// until it would finally hit index 3, where the probe would succeed.
//
// Instead, we apply a similar optimization on the follower. When the
// follower receives the probe at index 8 (log term 3), it concludes
// that all of the leader's log preceding that index has log terms of
// 3 or below. The largest index in the follower's log with a log term
// of 3 or below is index 3. The follower will thus return a rejection
// for index=3, log term=3 instead. The leader's next probe will then
// succeed at that index.
//
// [1]: more precisely, if the log terms in the large uncommitted
// tail on the follower are larger than the leader's. At first,
// it may seem unintuitive that a follower could even have such
// a large tail, but it can happen:
//
// 1. Leader appends (but does not commit) entries 2 and 3, crashes.
// idx 1 2 3 4 5 6 7 8 9
// -----------------
// term (L) 1 2 2 [crashes]
// term (F) 1
// term (F) 1
//
// 2. a follower becomes leader and appends entries at term 3.
// -----------------
// term (x) 1 2 2 [down]
// term (F) 1 3 3 3 3
// term (F) 1
//
// 3. term 3 leader goes down, term 2 leader returns as term 4
// leader. It commits the log & entries at term 4.
//
// -----------------
// term (L) 1 2 2 2
// term (x) 1 3 3 3 3 [down]
// term (F) 1
// -----------------
// term (L) 1 2 2 2 4 4 4
// term (F) 1 3 3 3 3 [gets probed]
// term (F) 1 2 2 2 4 4 4
//
// 4. the leader will now probe the returning follower at index
// 7, the rejection points it at the end of the follower's log
// which is at a higher log term than the actually committed
// log.
nextProbeIdx, _ = r.raftLog.findConflictByTerm(m.RejectHint, m.LogTerm)
}
if pr.MaybeDecrTo(m.Index, nextProbeIdx) {
r.logger.Debugf("%x decreased progress of %x to [%s]", r.id, m.From, pr)
if pr.State == tracker.StateReplicate {
pr.BecomeProbe()
}
r.sendAppend(m.From)
}
} else {
// We want to update our tracking if the response updates our
// matched index or if the response can move a probing peer back
// into StateReplicate (see heartbeat_rep_recovers_from_probing.txt
// for an example of the latter case).
// NB: the same does not make sense for StateSnapshot - if `m.Index`
// equals pr.Match we know we don't m.Index+1 in our log, so moving
// back to replicating state is not useful; besides pr.PendingSnapshot
// would prevent it.
if pr.MaybeUpdate(m.Index) || (pr.Match == m.Index && pr.State == tracker.StateProbe) {
switch {
case pr.State == tracker.StateProbe:
pr.BecomeReplicate()
case pr.State == tracker.StateSnapshot && pr.Match+1 >= r.raftLog.firstIndex():
// Note that we don't take into account PendingSnapshot to
// enter this branch. No matter at which index a snapshot
// was actually applied, as long as this allows catching up
// the follower from the log, we will accept it. This gives
// systems more flexibility in how they implement snapshots;
// see the comments on PendingSnapshot.
r.logger.Debugf("%x recovered from needing snapshot, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
// Transition back to replicating state via probing state
// (which takes the snapshot into account). If we didn't
// move to replicating state, that would only happen with
// the next round of appends (but there may not be a next
// round for a while, exposing an inconsistent RaftStatus).
pr.BecomeProbe()
pr.BecomeReplicate()
case pr.State == tracker.StateReplicate:
pr.Inflights.FreeLE(m.Index)
}
if r.maybeCommit() {
// committed index has progressed for the term, so it is safe
// to respond to pending read index requests
releasePendingReadIndexMessages(r)
r.bcastAppend()
} else if r.id != m.From && pr.CanBumpCommit(r.raftLog.committed) {
// This node may be missing the latest commit index, so send it.
// NB: this is not strictly necessary because the periodic heartbeat
// messages deliver commit indices too. However, a message sent now
// may arrive earlier than the next heartbeat fires.
r.sendAppend(m.From)
}
// We've updated flow control information above, which may
// allow us to send multiple (size-limited) in-flight messages
// at once (such as when transitioning from probe to
// replicate, or when freeTo() covers multiple messages). If
// we have more entries to send, send as many messages as we
// can (without sending empty messages for the commit index)
if r.id != m.From {
for r.maybeSendAppend(m.From, false /* sendIfEmpty */) {
}
}
// Transfer leadership is in progress.
if m.From == r.leadTransferee && pr.Match == r.raftLog.lastIndex() {
r.logger.Infof("%x sent MsgTimeoutNow to %x after received MsgAppResp", r.id, m.From)
r.sendTimeoutNow(m.From)
}
}
}
case pb.MsgHeartbeatResp:
pr.RecentActive = true
pr.MsgAppFlowPaused = false
// NB: if the follower is paused (full Inflights), this will still send an
// empty append, allowing it to recover from situations in which all the
// messages that filled up Inflights in the first place were dropped. Note
// also that the outgoing heartbeat already communicated the commit index.
//
// If the follower is fully caught up but also in StateProbe (as can happen
// if ReportUnreachable was called), we also want to send an append (it will
// be empty) to allow the follower to transition back to StateReplicate once
// it responds.
//
// Note that StateSnapshot typically satisfies pr.Match < lastIndex, but
// `pr.Paused()` is always true for StateSnapshot, so sendAppend is a
// no-op.
if pr.Match < r.raftLog.lastIndex() || pr.State == tracker.StateProbe {
r.sendAppend(m.From)
}
if r.readOnly.option != ReadOnlySafe || len(m.Context) == 0 {
return nil
}
if r.trk.Voters.VoteResult(r.readOnly.recvAck(m.From, m.Context)) != quorum.VoteWon {
return nil
}
rss := r.readOnly.advance(m)
for _, rs := range rss {
if resp := r.responseToReadIndexReq(rs.req, rs.index); resp.To != None {
r.send(resp)
}
}
case pb.MsgSnapStatus:
if pr.State != tracker.StateSnapshot {
return nil
}
if !m.Reject {
pr.BecomeProbe()
r.logger.Debugf("%x snapshot succeeded, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
} else {
// NB: the order here matters or we'll be probing erroneously from
// the snapshot index, but the snapshot never applied.
pr.PendingSnapshot = 0
pr.BecomeProbe()
r.logger.Debugf("%x snapshot failed, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
}
// If snapshot finish, wait for the MsgAppResp from the remote node before sending
// out the next MsgApp.
// If snapshot failure, wait for a heartbeat interval before next try
pr.MsgAppFlowPaused = true
case pb.MsgUnreachable:
// During optimistic replication, if the remote becomes unreachable,
// there is huge probability that a MsgApp is lost.
if pr.State == tracker.StateReplicate {
pr.BecomeProbe()
}
r.logger.Debugf("%x failed to send message to %x because it is unreachable [%s]", r.id, m.From, pr)
case pb.MsgTransferLeader:
if pr.IsLearner {
r.logger.Debugf("%x is learner. Ignored transferring leadership", r.id)
return nil
}
leadTransferee := m.From
lastLeadTransferee := r.leadTransferee
if lastLeadTransferee != None {
if lastLeadTransferee == leadTransferee {
r.logger.Infof("%x [term %d] transfer leadership to %x is in progress, ignores request to same node %x",
r.id, r.Term, leadTransferee, leadTransferee)
return nil
}
r.abortLeaderTransfer()
r.logger.Infof("%x [term %d] abort previous transferring leadership to %x", r.id, r.Term, lastLeadTransferee)
}
if leadTransferee == r.id {
r.logger.Debugf("%x is already leader. Ignored transferring leadership to self", r.id)
return nil
}
// Transfer leadership to third party.
r.logger.Infof("%x [term %d] starts to transfer leadership to %x", r.id, r.Term, leadTransferee)
// Transfer leadership should be finished in one electionTimeout, so reset r.electionElapsed.
r.electionElapsed = 0
r.leadTransferee = leadTransferee
if pr.Match == r.raftLog.lastIndex() {
r.sendTimeoutNow(leadTransferee)
r.logger.Infof("%x sends MsgTimeoutNow to %x immediately as %x already has up-to-date log", r.id, leadTransferee, leadTransferee)
} else {
r.sendAppend(leadTransferee)
}
}
return nil
}
// stepCandidate is shared by StateCandidate and StatePreCandidate; the difference is
// whether they respond to MsgVoteResp or MsgPreVoteResp.
func stepCandidate(r *raft, m pb.Message) error {
// Only handle vote responses corresponding to our candidacy (while in
// StateCandidate, we may get stale MsgPreVoteResp messages in this term from
// our pre-candidate state).
var myVoteRespType pb.MessageType
if r.state == StatePreCandidate {
myVoteRespType = pb.MsgPreVoteResp
} else {
myVoteRespType = pb.MsgVoteResp
}
switch m.Type {
case pb.MsgProp:
r.logger.Infof("%x no leader at term %d; dropping proposal", r.id, r.Term)
return ErrProposalDropped
case pb.MsgApp:
r.becomeFollower(m.Term, m.From) // always m.Term == r.Term
r.handleAppendEntries(m)
case pb.MsgHeartbeat:
r.becomeFollower(m.Term, m.From) // always m.Term == r.Term
r.handleHeartbeat(m)
case pb.MsgSnap:
r.becomeFollower(m.Term, m.From) // always m.Term == r.Term
r.handleSnapshot(m)
case myVoteRespType:
gr, rj, res := r.poll(m.From, m.Type, !m.Reject)
r.logger.Infof("%x has received %d %s votes and %d vote rejections", r.id, gr, m.Type, rj)
switch res {
case quorum.VoteWon:
if r.state == StatePreCandidate {
r.campaign(campaignElection)
} else {
r.becomeLeader()
r.bcastAppend()
}
case quorum.VoteLost:
// pb.MsgPreVoteResp contains future term of pre-candidate
// m.Term > r.Term; reuse r.Term
r.becomeFollower(r.Term, None)
}
case pb.MsgTimeoutNow:
r.logger.Debugf("%x [term %d state %v] ignored MsgTimeoutNow from %x", r.id, r.Term, r.state, m.From)
}
return nil
}
func stepFollower(r *raft, m pb.Message) error {
switch m.Type {
case pb.MsgProp:
if r.lead == None {
r.logger.Infof("%x no leader at term %d; dropping proposal", r.id, r.Term)
return ErrProposalDropped
} else if r.disableProposalForwarding {
r.logger.Infof("%x not forwarding to leader %x at term %d; dropping proposal", r.id, r.lead, r.Term)
return ErrProposalDropped
}
m.To = r.lead
r.send(m)
case pb.MsgApp:
r.electionElapsed = 0
r.lead = m.From
r.handleAppendEntries(m)
case pb.MsgHeartbeat:
r.electionElapsed = 0
r.lead = m.From
r.handleHeartbeat(m)
case pb.MsgSnap:
r.electionElapsed = 0
r.lead = m.From
r.handleSnapshot(m)
case pb.MsgTransferLeader:
if r.lead == None {
r.logger.Infof("%x no leader at term %d; dropping leader transfer msg", r.id, r.Term)
return nil
}
m.To = r.lead
r.send(m)
case pb.MsgForgetLeader:
if r.readOnly.option == ReadOnlyLeaseBased {
r.logger.Error("ignoring MsgForgetLeader due to ReadOnlyLeaseBased")
return nil
}
if r.lead != None {
r.logger.Infof("%x forgetting leader %x at term %d", r.id, r.lead, r.Term)
r.lead = None
}
case pb.MsgTimeoutNow:
r.logger.Infof("%x [term %d] received MsgTimeoutNow from %x and starts an election to get leadership.", r.id, r.Term, m.From)
// Leadership transfers never use pre-vote even if r.preVote is true; we
// know we are not recovering from a partition so there is no need for the
// extra round trip.
r.hup(campaignTransfer)
case pb.MsgReadIndex:
if r.lead == None {
r.logger.Infof("%x no leader at term %d; dropping index reading msg", r.id, r.Term)
return nil
}
m.To = r.lead
r.send(m)
case pb.MsgReadIndexResp:
if len(m.Entries) != 1 {
r.logger.Errorf("%x invalid format of MsgReadIndexResp from %x, entries count: %d", r.id, m.From, len(m.Entries))
return nil
}
r.readStates = append(r.readStates, ReadState{Index: m.Index, RequestCtx: m.Entries[0].Data})
}
return nil
}
// logSliceFromMsgApp extracts the appended logSlice from a MsgApp message.
func logSliceFromMsgApp(m *pb.Message) logSlice {
// TODO(pav-kv): consider also validating the logSlice here.
return logSlice{
term: m.Term,
prev: entryID{term: m.LogTerm, index: m.Index},
entries: m.Entries,
}
}
func (r *raft) handleAppendEntries(m pb.Message) {
// TODO(pav-kv): construct logSlice up the stack next to receiving the
// message, and validate it before taking any action (e.g. bumping term).
a := logSliceFromMsgApp(&m)
if a.prev.index < r.raftLog.committed {
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})
return
}
if mlastIndex, ok := r.raftLog.maybeAppend(a, m.Commit); ok {
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: mlastIndex})
return
}
r.logger.Debugf("%x [logterm: %d, index: %d] rejected MsgApp [logterm: %d, index: %d] from %x",
r.id, r.raftLog.zeroTermOnOutOfBounds(r.raftLog.term(m.Index)), m.Index, m.LogTerm, m.Index, m.From)
// Our log does not match the leader's at index m.Index. Return a hint to the
// leader - a guess on the maximal (index, term) at which the logs match. Do
// this by searching through the follower's log for the maximum (index, term)
// pair with a term <= the MsgApp's LogTerm and an index <= the MsgApp's
// Index. This can help skip all indexes in the follower's uncommitted tail
// with terms greater than the MsgApp's LogTerm.
//
// See the other caller for findConflictByTerm (in stepLeader) for a much more
// detailed explanation of this mechanism.
// NB: m.Index >= raftLog.committed by now (see the early return above), and
// raftLog.lastIndex() >= raftLog.committed by invariant, so min of the two is
// also >= raftLog.committed. Hence, the findConflictByTerm argument is within
// the valid interval, which then will return a valid (index, term) pair with
// a non-zero term (unless the log is empty). However, it is safe to send a zero
// LogTerm in this response in any case, so we don't verify it here.
hintIndex := min(m.Index, r.raftLog.lastIndex())
hintIndex, hintTerm := r.raftLog.findConflictByTerm(hintIndex, m.LogTerm)
r.send(pb.Message{
To: m.From,
Type: pb.MsgAppResp,
Index: m.Index,
Reject: true,
RejectHint: hintIndex,
LogTerm: hintTerm,
})
}
func (r *raft) handleHeartbeat(m pb.Message) {
r.raftLog.commitTo(m.Commit)
r.send(pb.Message{To: m.From, Type: pb.MsgHeartbeatResp, Context: m.Context})
}
func (r *raft) handleSnapshot(m pb.Message) {
// MsgSnap messages should always carry a non-nil Snapshot, but err on the
// side of safety and treat a nil Snapshot as a zero-valued Snapshot.
var s pb.Snapshot
if m.Snapshot != nil {
s = *m.Snapshot
}
sindex, sterm := s.Metadata.Index, s.Metadata.Term
if r.restore(s) {
r.logger.Infof("%x [commit: %d] restored snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, sindex, sterm)
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.lastIndex()})
} else {
r.logger.Infof("%x [commit: %d] ignored snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, sindex, sterm)
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})
}
}
// restore recovers the state machine from a snapshot. It restores the log and the
// configuration of state machine. If this method returns false, the snapshot was
// ignored, either because it was obsolete or because of an error.
func (r *raft) restore(s pb.Snapshot) bool {
if s.Metadata.Index <= r.raftLog.committed {
return false
}
if r.state != StateFollower {
// This is defense-in-depth: if the leader somehow ended up applying a
// snapshot, it could move into a new term without moving into a
// follower state. This should never fire, but if it did, we'd have
// prevented damage by returning early, so log only a loud warning.
//
// At the time of writing, the instance is guaranteed to be in follower
// state when this method is called.
r.logger.Warningf("%x attempted to restore snapshot as leader; should never happen", r.id)
r.becomeFollower(r.Term+1, None)
return false
}
// More defense-in-depth: throw away snapshot if recipient is not in the
// config. This shouldn't ever happen (at the time of writing) but lots of
// code here and there assumes that r.id is in the progress tracker.
found := false
cs := s.Metadata.ConfState
for _, set := range [][]uint64{
cs.Voters,
cs.Learners,
cs.VotersOutgoing,
// `LearnersNext` doesn't need to be checked. According to the rules, if a peer in
// `LearnersNext`, it has to be in `VotersOutgoing`.
} {
for _, id := range set {
if id == r.id {
found = true
break
}
}
if found {
break
}
}
if !found {
r.logger.Warningf(
"%x attempted to restore snapshot but it is not in the ConfState %v; should never happen",
r.id, cs,
)
return false
}
// Now go ahead and actually restore.
id := entryID{term: s.Metadata.Term, index: s.Metadata.Index}
if r.raftLog.matchTerm(id) {
// TODO(pav-kv): can print %+v of the id, but it will change the format.
last := r.raftLog.lastEntryID()
r.logger.Infof("%x [commit: %d, lastindex: %d, lastterm: %d] fast-forwarded commit to snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, last.index, last.term, id.index, id.term)
r.raftLog.commitTo(s.Metadata.Index)
return false
}
r.raftLog.restore(s)
// Reset the configuration and add the (potentially updated) peers in anew.
r.trk = tracker.MakeProgressTracker(r.trk.MaxInflight, r.trk.MaxInflightBytes)
cfg, trk, err := confchange.Restore(confchange.Changer{
Tracker: r.trk,
LastIndex: r.raftLog.lastIndex(),
}, cs)
if err != nil {
// This should never happen. Either there's a bug in our config change
// handling or the client corrupted the conf change.
panic(fmt.Sprintf("unable to restore config %+v: %s", cs, err))
}
assertConfStatesEquivalent(r.logger, cs, r.switchToConfig(cfg, trk))
last := r.raftLog.lastEntryID()
r.logger.Infof("%x [commit: %d, lastindex: %d, lastterm: %d] restored snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, last.index, last.term, id.index, id.term)
return true
}
// promotable indicates whether state machine can be promoted to leader,
// which is true when its own id is in progress list.
func (r *raft) promotable() bool {
pr := r.trk.Progress[r.id]
return pr != nil && !pr.IsLearner && !r.raftLog.hasNextOrInProgressSnapshot()
}
func (r *raft) applyConfChange(cc pb.ConfChangeV2) pb.ConfState {
cfg, trk, err := func() (tracker.Config, tracker.ProgressMap, error) {
changer := confchange.Changer{
Tracker: r.trk,
LastIndex: r.raftLog.lastIndex(),
}
if cc.LeaveJoint() {
return changer.LeaveJoint()
} else if autoLeave, ok := cc.EnterJoint(); ok {
return changer.EnterJoint(autoLeave, cc.Changes...)
}
return changer.Simple(cc.Changes...)
}()
if err != nil {
// TODO(tbg): return the error to the caller.
panic(err)
}
return r.switchToConfig(cfg, trk)
}
// switchToConfig reconfigures this node to use the provided configuration. It
// updates the in-memory state and, when necessary, carries out additional
// actions such as reacting to the removal of nodes or changed quorum
// requirements.
//
// The inputs usually result from restoring a ConfState or applying a ConfChange.
func (r *raft) switchToConfig(cfg tracker.Config, trk tracker.ProgressMap) pb.ConfState {
traceConfChangeEvent(cfg, r)
r.trk.Config = cfg
r.trk.Progress = trk
r.logger.Infof("%x switched to configuration %s", r.id, r.trk.Config)
cs := r.trk.ConfState()
pr, ok := r.trk.Progress[r.id]
// Update whether the node itself is a learner, resetting to false when the
// node is removed.
r.isLearner = ok && pr.IsLearner
if (!ok || r.isLearner) && r.state == StateLeader {
// This node is leader and was removed or demoted, step down if requested.
//
// We prevent demotions at the time writing but hypothetically we handle
// them the same way as removing the leader.
//
// TODO(tbg): ask follower with largest Match to TimeoutNow (to avoid
// interruption). This might still drop some proposals but it's better than
// nothing.
if r.stepDownOnRemoval {
r.becomeFollower(r.Term, None)
}
return cs
}
// The remaining steps only make sense if this node is the leader and there
// are other nodes.
if r.state != StateLeader || len(cs.Voters) == 0 {
return cs
}
if r.maybeCommit() {
// If the configuration change means that more entries are committed now,
// broadcast/append to everyone in the updated config.
r.bcastAppend()
} else {
// Otherwise, still probe the newly added replicas; there's no reason to
// let them wait out a heartbeat interval (or the next incoming
// proposal).
r.trk.Visit(func(id uint64, _ *tracker.Progress) {
if id == r.id {
return
}
r.maybeSendAppend(id, false /* sendIfEmpty */)
})
}
// If the leadTransferee was removed or demoted, abort the leadership transfer.
if _, tOK := r.trk.Config.Voters.IDs()[r.leadTransferee]; !tOK && r.leadTransferee != 0 {
r.abortLeaderTransfer()
}
return cs
}
func (r *raft) loadState(state pb.HardState) {
if state.Commit < r.raftLog.committed || state.Commit > r.raftLog.lastIndex() {
r.logger.Panicf("%x state.commit %d is out of range [%d, %d]", r.id, state.Commit, r.raftLog.committed, r.raftLog.lastIndex())
}
r.raftLog.committed = state.Commit
r.Term = state.Term
r.Vote = state.Vote
}
// pastElectionTimeout returns true if r.electionElapsed is greater
// than or equal to the randomized election timeout in
// [electiontimeout, 2 * electiontimeout - 1].
func (r *raft) pastElectionTimeout() bool {
return r.electionElapsed >= r.randomizedElectionTimeout
}
func (r *raft) resetRandomizedElectionTimeout() {
r.randomizedElectionTimeout = r.electionTimeout + globalRand.Intn(r.electionTimeout)
}
func (r *raft) sendTimeoutNow(to uint64) {
r.send(pb.Message{To: to, Type: pb.MsgTimeoutNow})
}
func (r *raft) abortLeaderTransfer() {
r.leadTransferee = None
}
// committedEntryInCurrentTerm return true if the peer has committed an entry in its term.
func (r *raft) committedEntryInCurrentTerm() bool {
// NB: r.Term is never 0 on a leader, so if zeroTermOnOutOfBounds returns 0,
// we won't see it as a match with r.Term.
return r.raftLog.zeroTermOnOutOfBounds(r.raftLog.term(r.raftLog.committed)) == r.Term
}
// responseToReadIndexReq constructs a response for `req`. If `req` comes from the peer
// itself, a blank value will be returned.
func (r *raft) responseToReadIndexReq(req pb.Message, readIndex uint64) pb.Message {
if req.From == None || req.From == r.id {
r.readStates = append(r.readStates, ReadState{
Index: readIndex,
RequestCtx: req.Entries[0].Data,
})
return pb.Message{}
}
return pb.Message{
Type: pb.MsgReadIndexResp,
To: req.From,
Index: readIndex,
Entries: req.Entries,
}
}
// increaseUncommittedSize computes the size of the proposed entries and
// determines whether they would push leader over its maxUncommittedSize limit.
// If the new entries would exceed the limit, the method returns false. If not,
// the increase in uncommitted entry size is recorded and the method returns
// true.
//
// Empty payloads are never refused. This is used both for appending an empty
// entry at a new leader's term, as well as leaving a joint configuration.
func (r *raft) increaseUncommittedSize(ents []pb.Entry) bool {
s := payloadsSize(ents)
if r.uncommittedSize > 0 && s > 0 && r.uncommittedSize+s > r.maxUncommittedSize {
// If the uncommitted tail of the Raft log is empty, allow any size
// proposal. Otherwise, limit the size of the uncommitted tail of the
// log and drop any proposal that would push the size over the limit.
// Note the added requirement s>0 which is used to make sure that
// appending single empty entries to the log always succeeds, used both
// for replicating a new leader's initial empty entry, and for
// auto-leaving joint configurations.
return false
}
r.uncommittedSize += s
return true
}
// reduceUncommittedSize accounts for the newly committed entries by decreasing
// the uncommitted entry size limit.
func (r *raft) reduceUncommittedSize(s entryPayloadSize) {
if s > r.uncommittedSize {
// uncommittedSize may underestimate the size of the uncommitted Raft
// log tail but will never overestimate it. Saturate at 0 instead of
// allowing overflow.
r.uncommittedSize = 0
} else {
r.uncommittedSize -= s
}
}
func releasePendingReadIndexMessages(r *raft) {
if len(r.pendingReadIndexMessages) == 0 {
// Fast path for the common case to avoid a call to storage.LastIndex()
// via committedEntryInCurrentTerm.
return
}
if !r.committedEntryInCurrentTerm() {
r.logger.Error("pending MsgReadIndex should be released only after first commit in current term")
return
}
msgs := r.pendingReadIndexMessages
r.pendingReadIndexMessages = nil
for _, m := range msgs {
sendMsgReadIndexResponse(r, m)
}
}
func sendMsgReadIndexResponse(r *raft, m pb.Message) {
// thinking: use an internally defined context instead of the user given context.
// We can express this in terms of the term and index instead of a user-supplied value.
// This would allow multiple reads to piggyback on the same message.
switch r.readOnly.option {
// If more than the local vote is needed, go through a full broadcast.
case ReadOnlySafe:
r.readOnly.addRequest(r.raftLog.committed, m)
// The local node automatically acks the request.
r.readOnly.recvAck(r.id, m.Entries[0].Data)
r.bcastHeartbeatWithCtx(m.Entries[0].Data)
case ReadOnlyLeaseBased:
if resp := r.responseToReadIndexReq(m, r.raftLog.committed); resp.To != None {
r.send(resp)
}
}
}