[VOL-5486] Fix deprecated versions

Change-Id: If0b888d6c2f33b2f415c8b03b08dc994bb3df3f4
Signed-off-by: Abhay Kumar <abhay.kumar@radisys.com>
diff --git a/vendor/github.com/klauspost/compress/flate/deflate.go b/vendor/github.com/klauspost/compress/flate/deflate.go
new file mode 100644
index 0000000..af53fb8
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/deflate.go
@@ -0,0 +1,1017 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Copyright (c) 2015 Klaus Post
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+	"encoding/binary"
+	"errors"
+	"fmt"
+	"io"
+	"math"
+)
+
+const (
+	NoCompression      = 0
+	BestSpeed          = 1
+	BestCompression    = 9
+	DefaultCompression = -1
+
+	// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
+	// entropy encoding. This mode is useful in compressing data that has
+	// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
+	// that lacks an entropy encoder. Compression gains are achieved when
+	// certain bytes in the input stream occur more frequently than others.
+	//
+	// Note that HuffmanOnly produces a compressed output that is
+	// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
+	// continue to be able to decompress this output.
+	HuffmanOnly         = -2
+	ConstantCompression = HuffmanOnly // compatibility alias.
+
+	logWindowSize    = 15
+	windowSize       = 1 << logWindowSize
+	windowMask       = windowSize - 1
+	logMaxOffsetSize = 15  // Standard DEFLATE
+	minMatchLength   = 4   // The smallest match that the compressor looks for
+	maxMatchLength   = 258 // The longest match for the compressor
+	minOffsetSize    = 1   // The shortest offset that makes any sense
+
+	// The maximum number of tokens we will encode at the time.
+	// Smaller sizes usually creates less optimal blocks.
+	// Bigger can make context switching slow.
+	// We use this for levels 7-9, so we make it big.
+	maxFlateBlockTokens = 1 << 15
+	maxStoreBlockSize   = 65535
+	hashBits            = 17 // After 17 performance degrades
+	hashSize            = 1 << hashBits
+	hashMask            = (1 << hashBits) - 1
+	hashShift           = (hashBits + minMatchLength - 1) / minMatchLength
+	maxHashOffset       = 1 << 28
+
+	skipNever = math.MaxInt32
+
+	debugDeflate = false
+)
+
+type compressionLevel struct {
+	good, lazy, nice, chain, fastSkipHashing, level int
+}
+
+// Compression levels have been rebalanced from zlib deflate defaults
+// to give a bigger spread in speed and compression.
+// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
+var levels = []compressionLevel{
+	{}, // 0
+	// Level 1-6 uses specialized algorithm - values not used
+	{0, 0, 0, 0, 0, 1},
+	{0, 0, 0, 0, 0, 2},
+	{0, 0, 0, 0, 0, 3},
+	{0, 0, 0, 0, 0, 4},
+	{0, 0, 0, 0, 0, 5},
+	{0, 0, 0, 0, 0, 6},
+	// Levels 7-9 use increasingly more lazy matching
+	// and increasingly stringent conditions for "good enough".
+	{8, 12, 16, 24, skipNever, 7},
+	{16, 30, 40, 64, skipNever, 8},
+	{32, 258, 258, 1024, skipNever, 9},
+}
+
+// advancedState contains state for the advanced levels, with bigger hash tables, etc.
+type advancedState struct {
+	// deflate state
+	length         int
+	offset         int
+	maxInsertIndex int
+	chainHead      int
+	hashOffset     int
+
+	ii uint16 // position of last match, intended to overflow to reset.
+
+	// input window: unprocessed data is window[index:windowEnd]
+	index     int
+	hashMatch [maxMatchLength + minMatchLength]uint32
+
+	// Input hash chains
+	// hashHead[hashValue] contains the largest inputIndex with the specified hash value
+	// If hashHead[hashValue] is within the current window, then
+	// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
+	// with the same hash value.
+	hashHead [hashSize]uint32
+	hashPrev [windowSize]uint32
+}
+
+type compressor struct {
+	compressionLevel
+
+	h *huffmanEncoder
+	w *huffmanBitWriter
+
+	// compression algorithm
+	fill func(*compressor, []byte) int // copy data to window
+	step func(*compressor)             // process window
+
+	window     []byte
+	windowEnd  int
+	blockStart int // window index where current tokens start
+	err        error
+
+	// queued output tokens
+	tokens tokens
+	fast   fastEnc
+	state  *advancedState
+
+	sync          bool // requesting flush
+	byteAvailable bool // if true, still need to process window[index-1].
+}
+
+func (d *compressor) fillDeflate(b []byte) int {
+	s := d.state
+	if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
+		// shift the window by windowSize
+		//copy(d.window[:], d.window[windowSize:2*windowSize])
+		*(*[windowSize]byte)(d.window) = *(*[windowSize]byte)(d.window[windowSize:])
+		s.index -= windowSize
+		d.windowEnd -= windowSize
+		if d.blockStart >= windowSize {
+			d.blockStart -= windowSize
+		} else {
+			d.blockStart = math.MaxInt32
+		}
+		s.hashOffset += windowSize
+		if s.hashOffset > maxHashOffset {
+			delta := s.hashOffset - 1
+			s.hashOffset -= delta
+			s.chainHead -= delta
+			// Iterate over slices instead of arrays to avoid copying
+			// the entire table onto the stack (Issue #18625).
+			for i, v := range s.hashPrev[:] {
+				if int(v) > delta {
+					s.hashPrev[i] = uint32(int(v) - delta)
+				} else {
+					s.hashPrev[i] = 0
+				}
+			}
+			for i, v := range s.hashHead[:] {
+				if int(v) > delta {
+					s.hashHead[i] = uint32(int(v) - delta)
+				} else {
+					s.hashHead[i] = 0
+				}
+			}
+		}
+	}
+	n := copy(d.window[d.windowEnd:], b)
+	d.windowEnd += n
+	return n
+}
+
+func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
+	if index > 0 || eof {
+		var window []byte
+		if d.blockStart <= index {
+			window = d.window[d.blockStart:index]
+		}
+		d.blockStart = index
+		//d.w.writeBlock(tok, eof, window)
+		d.w.writeBlockDynamic(tok, eof, window, d.sync)
+		return d.w.err
+	}
+	return nil
+}
+
+// writeBlockSkip writes the current block and uses the number of tokens
+// to determine if the block should be stored on no matches, or
+// only huffman encoded.
+func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
+	if index > 0 || eof {
+		if d.blockStart <= index {
+			window := d.window[d.blockStart:index]
+			// If we removed less than a 64th of all literals
+			// we huffman compress the block.
+			if int(tok.n) > len(window)-int(tok.n>>6) {
+				d.w.writeBlockHuff(eof, window, d.sync)
+			} else {
+				// Write a dynamic huffman block.
+				d.w.writeBlockDynamic(tok, eof, window, d.sync)
+			}
+		} else {
+			d.w.writeBlock(tok, eof, nil)
+		}
+		d.blockStart = index
+		return d.w.err
+	}
+	return nil
+}
+
+// fillWindow will fill the current window with the supplied
+// dictionary and calculate all hashes.
+// This is much faster than doing a full encode.
+// Should only be used after a start/reset.
+func (d *compressor) fillWindow(b []byte) {
+	// Do not fill window if we are in store-only or huffman mode.
+	if d.level <= 0 && d.level > -MinCustomWindowSize {
+		return
+	}
+	if d.fast != nil {
+		// encode the last data, but discard the result
+		if len(b) > maxMatchOffset {
+			b = b[len(b)-maxMatchOffset:]
+		}
+		d.fast.Encode(&d.tokens, b)
+		d.tokens.Reset()
+		return
+	}
+	s := d.state
+	// If we are given too much, cut it.
+	if len(b) > windowSize {
+		b = b[len(b)-windowSize:]
+	}
+	// Add all to window.
+	n := copy(d.window[d.windowEnd:], b)
+
+	// Calculate 256 hashes at the time (more L1 cache hits)
+	loops := (n + 256 - minMatchLength) / 256
+	for j := 0; j < loops; j++ {
+		startindex := j * 256
+		end := startindex + 256 + minMatchLength - 1
+		if end > n {
+			end = n
+		}
+		tocheck := d.window[startindex:end]
+		dstSize := len(tocheck) - minMatchLength + 1
+
+		if dstSize <= 0 {
+			continue
+		}
+
+		dst := s.hashMatch[:dstSize]
+		bulkHash4(tocheck, dst)
+		var newH uint32
+		for i, val := range dst {
+			di := i + startindex
+			newH = val & hashMask
+			// Get previous value with the same hash.
+			// Our chain should point to the previous value.
+			s.hashPrev[di&windowMask] = s.hashHead[newH]
+			// Set the head of the hash chain to us.
+			s.hashHead[newH] = uint32(di + s.hashOffset)
+		}
+	}
+	// Update window information.
+	d.windowEnd += n
+	s.index = n
+}
+
+// Try to find a match starting at index whose length is greater than prevSize.
+// We only look at chainCount possibilities before giving up.
+// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
+func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) {
+	minMatchLook := maxMatchLength
+	if lookahead < minMatchLook {
+		minMatchLook = lookahead
+	}
+
+	win := d.window[0 : pos+minMatchLook]
+
+	// We quit when we get a match that's at least nice long
+	nice := len(win) - pos
+	if d.nice < nice {
+		nice = d.nice
+	}
+
+	// If we've got a match that's good enough, only look in 1/4 the chain.
+	tries := d.chain
+	length = minMatchLength - 1
+
+	wEnd := win[pos+length]
+	wPos := win[pos:]
+	minIndex := pos - windowSize
+	if minIndex < 0 {
+		minIndex = 0
+	}
+	offset = 0
+
+	if d.chain < 100 {
+		for i := prevHead; tries > 0; tries-- {
+			if wEnd == win[i+length] {
+				n := matchLen(win[i:i+minMatchLook], wPos)
+				if n > length {
+					length = n
+					offset = pos - i
+					ok = true
+					if n >= nice {
+						// The match is good enough that we don't try to find a better one.
+						break
+					}
+					wEnd = win[pos+n]
+				}
+			}
+			if i <= minIndex {
+				// hashPrev[i & windowMask] has already been overwritten, so stop now.
+				break
+			}
+			i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
+			if i < minIndex {
+				break
+			}
+		}
+		return
+	}
+
+	// Minimum gain to accept a match.
+	cGain := 4
+
+	// Some like it higher (CSV), some like it lower (JSON)
+	const baseCost = 3
+	// Base is 4 bytes at with an additional cost.
+	// Matches must be better than this.
+
+	for i := prevHead; tries > 0; tries-- {
+		if wEnd == win[i+length] {
+			n := matchLen(win[i:i+minMatchLook], wPos)
+			if n > length {
+				// Calculate gain. Estimate
+				newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]])
+
+				//fmt.Println("gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n]), "this-len:", n, "prev-len:", length)
+				if newGain > cGain {
+					length = n
+					offset = pos - i
+					cGain = newGain
+					ok = true
+					if n >= nice {
+						// The match is good enough that we don't try to find a better one.
+						break
+					}
+					wEnd = win[pos+n]
+				}
+			}
+		}
+		if i <= minIndex {
+			// hashPrev[i & windowMask] has already been overwritten, so stop now.
+			break
+		}
+		i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
+		if i < minIndex {
+			break
+		}
+	}
+	return
+}
+
+func (d *compressor) writeStoredBlock(buf []byte) error {
+	if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
+		return d.w.err
+	}
+	d.w.writeBytes(buf)
+	return d.w.err
+}
+
+// hash4 returns a hash representation of the first 4 bytes
+// of the supplied slice.
+// The caller must ensure that len(b) >= 4.
+func hash4(b []byte) uint32 {
+	return hash4u(binary.LittleEndian.Uint32(b), hashBits)
+}
+
+// hash4 returns the hash of u to fit in a hash table with h bits.
+// Preferably h should be a constant and should always be <32.
+func hash4u(u uint32, h uint8) uint32 {
+	return (u * prime4bytes) >> (32 - h)
+}
+
+// bulkHash4 will compute hashes using the same
+// algorithm as hash4
+func bulkHash4(b []byte, dst []uint32) {
+	if len(b) < 4 {
+		return
+	}
+	hb := binary.LittleEndian.Uint32(b)
+
+	dst[0] = hash4u(hb, hashBits)
+	end := len(b) - 4 + 1
+	for i := 1; i < end; i++ {
+		hb = (hb >> 8) | uint32(b[i+3])<<24
+		dst[i] = hash4u(hb, hashBits)
+	}
+}
+
+func (d *compressor) initDeflate() {
+	d.window = make([]byte, 2*windowSize)
+	d.byteAvailable = false
+	d.err = nil
+	if d.state == nil {
+		return
+	}
+	s := d.state
+	s.index = 0
+	s.hashOffset = 1
+	s.length = minMatchLength - 1
+	s.offset = 0
+	s.chainHead = -1
+}
+
+// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
+// meaning it always has lazy matching on.
+func (d *compressor) deflateLazy() {
+	s := d.state
+	// Sanity enables additional runtime tests.
+	// It's intended to be used during development
+	// to supplement the currently ad-hoc unit tests.
+	const sanity = debugDeflate
+
+	if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
+		return
+	}
+	if d.windowEnd != s.index && d.chain > 100 {
+		// Get literal huffman coder.
+		if d.h == nil {
+			d.h = newHuffmanEncoder(maxFlateBlockTokens)
+		}
+		var tmp [256]uint16
+		for _, v := range d.window[s.index:d.windowEnd] {
+			tmp[v]++
+		}
+		d.h.generate(tmp[:], 15)
+	}
+
+	s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+
+	for {
+		if sanity && s.index > d.windowEnd {
+			panic("index > windowEnd")
+		}
+		lookahead := d.windowEnd - s.index
+		if lookahead < minMatchLength+maxMatchLength {
+			if !d.sync {
+				return
+			}
+			if sanity && s.index > d.windowEnd {
+				panic("index > windowEnd")
+			}
+			if lookahead == 0 {
+				// Flush current output block if any.
+				if d.byteAvailable {
+					// There is still one pending token that needs to be flushed
+					d.tokens.AddLiteral(d.window[s.index-1])
+					d.byteAvailable = false
+				}
+				if d.tokens.n > 0 {
+					if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+						return
+					}
+					d.tokens.Reset()
+				}
+				return
+			}
+		}
+		if s.index < s.maxInsertIndex {
+			// Update the hash
+			hash := hash4(d.window[s.index:])
+			ch := s.hashHead[hash]
+			s.chainHead = int(ch)
+			s.hashPrev[s.index&windowMask] = ch
+			s.hashHead[hash] = uint32(s.index + s.hashOffset)
+		}
+		prevLength := s.length
+		prevOffset := s.offset
+		s.length = minMatchLength - 1
+		s.offset = 0
+		minIndex := s.index - windowSize
+		if minIndex < 0 {
+			minIndex = 0
+		}
+
+		if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
+			if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok {
+				s.length = newLength
+				s.offset = newOffset
+			}
+		}
+
+		if prevLength >= minMatchLength && s.length <= prevLength {
+			// No better match, but check for better match at end...
+			//
+			// Skip forward a number of bytes.
+			// Offset of 2 seems to yield best results. 3 is sometimes better.
+			const checkOff = 2
+
+			// Check all, except full length
+			if prevLength < maxMatchLength-checkOff {
+				prevIndex := s.index - 1
+				if prevIndex+prevLength < s.maxInsertIndex {
+					end := lookahead
+					if lookahead > maxMatchLength+checkOff {
+						end = maxMatchLength + checkOff
+					}
+					end += prevIndex
+
+					// Hash at match end.
+					h := hash4(d.window[prevIndex+prevLength:])
+					ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
+					if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
+						length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
+						// It seems like a pure length metric is best.
+						if length > prevLength {
+							prevLength = length
+							prevOffset = prevIndex - ch2
+
+							// Extend back...
+							for i := checkOff - 1; i >= 0; i-- {
+								if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i] {
+									// Emit tokens we "owe"
+									for j := 0; j <= i; j++ {
+										d.tokens.AddLiteral(d.window[prevIndex+j])
+										if d.tokens.n == maxFlateBlockTokens {
+											// The block includes the current character
+											if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+												return
+											}
+											d.tokens.Reset()
+										}
+										s.index++
+										if s.index < s.maxInsertIndex {
+											h := hash4(d.window[s.index:])
+											ch := s.hashHead[h]
+											s.chainHead = int(ch)
+											s.hashPrev[s.index&windowMask] = ch
+											s.hashHead[h] = uint32(s.index + s.hashOffset)
+										}
+									}
+									break
+								} else {
+									prevLength++
+								}
+							}
+						} else if false {
+							// Check one further ahead.
+							// Only rarely better, disabled for now.
+							prevIndex++
+							h := hash4(d.window[prevIndex+prevLength:])
+							ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
+							if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
+								length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
+								// It seems like a pure length metric is best.
+								if length > prevLength+checkOff {
+									prevLength = length
+									prevOffset = prevIndex - ch2
+									prevIndex--
+
+									// Extend back...
+									for i := checkOff; i >= 0; i-- {
+										if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i-1] {
+											// Emit tokens we "owe"
+											for j := 0; j <= i; j++ {
+												d.tokens.AddLiteral(d.window[prevIndex+j])
+												if d.tokens.n == maxFlateBlockTokens {
+													// The block includes the current character
+													if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+														return
+													}
+													d.tokens.Reset()
+												}
+												s.index++
+												if s.index < s.maxInsertIndex {
+													h := hash4(d.window[s.index:])
+													ch := s.hashHead[h]
+													s.chainHead = int(ch)
+													s.hashPrev[s.index&windowMask] = ch
+													s.hashHead[h] = uint32(s.index + s.hashOffset)
+												}
+											}
+											break
+										} else {
+											prevLength++
+										}
+									}
+								}
+							}
+						}
+					}
+				}
+			}
+			// There was a match at the previous step, and the current match is
+			// not better. Output the previous match.
+			d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
+
+			// Insert in the hash table all strings up to the end of the match.
+			// index and index-1 are already inserted. If there is not enough
+			// lookahead, the last two strings are not inserted into the hash
+			// table.
+			newIndex := s.index + prevLength - 1
+			// Calculate missing hashes
+			end := newIndex
+			if end > s.maxInsertIndex {
+				end = s.maxInsertIndex
+			}
+			end += minMatchLength - 1
+			startindex := s.index + 1
+			if startindex > s.maxInsertIndex {
+				startindex = s.maxInsertIndex
+			}
+			tocheck := d.window[startindex:end]
+			dstSize := len(tocheck) - minMatchLength + 1
+			if dstSize > 0 {
+				dst := s.hashMatch[:dstSize]
+				bulkHash4(tocheck, dst)
+				var newH uint32
+				for i, val := range dst {
+					di := i + startindex
+					newH = val & hashMask
+					// Get previous value with the same hash.
+					// Our chain should point to the previous value.
+					s.hashPrev[di&windowMask] = s.hashHead[newH]
+					// Set the head of the hash chain to us.
+					s.hashHead[newH] = uint32(di + s.hashOffset)
+				}
+			}
+
+			s.index = newIndex
+			d.byteAvailable = false
+			s.length = minMatchLength - 1
+			if d.tokens.n == maxFlateBlockTokens {
+				// The block includes the current character
+				if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+					return
+				}
+				d.tokens.Reset()
+			}
+			s.ii = 0
+		} else {
+			// Reset, if we got a match this run.
+			if s.length >= minMatchLength {
+				s.ii = 0
+			}
+			// We have a byte waiting. Emit it.
+			if d.byteAvailable {
+				s.ii++
+				d.tokens.AddLiteral(d.window[s.index-1])
+				if d.tokens.n == maxFlateBlockTokens {
+					if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+						return
+					}
+					d.tokens.Reset()
+				}
+				s.index++
+
+				// If we have a long run of no matches, skip additional bytes
+				// Resets when s.ii overflows after 64KB.
+				if n := int(s.ii) - d.chain; n > 0 {
+					n = 1 + int(n>>6)
+					for j := 0; j < n; j++ {
+						if s.index >= d.windowEnd-1 {
+							break
+						}
+						d.tokens.AddLiteral(d.window[s.index-1])
+						if d.tokens.n == maxFlateBlockTokens {
+							if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+								return
+							}
+							d.tokens.Reset()
+						}
+						// Index...
+						if s.index < s.maxInsertIndex {
+							h := hash4(d.window[s.index:])
+							ch := s.hashHead[h]
+							s.chainHead = int(ch)
+							s.hashPrev[s.index&windowMask] = ch
+							s.hashHead[h] = uint32(s.index + s.hashOffset)
+						}
+						s.index++
+					}
+					// Flush last byte
+					d.tokens.AddLiteral(d.window[s.index-1])
+					d.byteAvailable = false
+					// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
+					if d.tokens.n == maxFlateBlockTokens {
+						if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
+							return
+						}
+						d.tokens.Reset()
+					}
+				}
+			} else {
+				s.index++
+				d.byteAvailable = true
+			}
+		}
+	}
+}
+
+func (d *compressor) store() {
+	if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
+		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+		d.windowEnd = 0
+	}
+}
+
+// fillWindow will fill the buffer with data for huffman-only compression.
+// The number of bytes copied is returned.
+func (d *compressor) fillBlock(b []byte) int {
+	n := copy(d.window[d.windowEnd:], b)
+	d.windowEnd += n
+	return n
+}
+
+// storeHuff will compress and store the currently added data,
+// if enough has been accumulated or we at the end of the stream.
+// Any error that occurred will be in d.err
+func (d *compressor) storeHuff() {
+	if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
+		return
+	}
+	d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
+	d.err = d.w.err
+	d.windowEnd = 0
+}
+
+// storeFast will compress and store the currently added data,
+// if enough has been accumulated or we at the end of the stream.
+// Any error that occurred will be in d.err
+func (d *compressor) storeFast() {
+	// We only compress if we have maxStoreBlockSize.
+	if d.windowEnd < len(d.window) {
+		if !d.sync {
+			return
+		}
+		// Handle extremely small sizes.
+		if d.windowEnd < 128 {
+			if d.windowEnd == 0 {
+				return
+			}
+			if d.windowEnd <= 32 {
+				d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+			} else {
+				d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
+				d.err = d.w.err
+			}
+			d.tokens.Reset()
+			d.windowEnd = 0
+			d.fast.Reset()
+			return
+		}
+	}
+
+	d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
+	// If we made zero matches, store the block as is.
+	if d.tokens.n == 0 {
+		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+		// If we removed less than 1/16th, huffman compress the block.
+	} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
+		d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
+		d.err = d.w.err
+	} else {
+		d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
+		d.err = d.w.err
+	}
+	d.tokens.Reset()
+	d.windowEnd = 0
+}
+
+// write will add input byte to the stream.
+// Unless an error occurs all bytes will be consumed.
+func (d *compressor) write(b []byte) (n int, err error) {
+	if d.err != nil {
+		return 0, d.err
+	}
+	n = len(b)
+	for len(b) > 0 {
+		if d.windowEnd == len(d.window) || d.sync {
+			d.step(d)
+		}
+		b = b[d.fill(d, b):]
+		if d.err != nil {
+			return 0, d.err
+		}
+	}
+	return n, d.err
+}
+
+func (d *compressor) syncFlush() error {
+	d.sync = true
+	if d.err != nil {
+		return d.err
+	}
+	d.step(d)
+	if d.err == nil {
+		d.w.writeStoredHeader(0, false)
+		d.w.flush()
+		d.err = d.w.err
+	}
+	d.sync = false
+	return d.err
+}
+
+func (d *compressor) init(w io.Writer, level int) (err error) {
+	d.w = newHuffmanBitWriter(w)
+
+	switch {
+	case level == NoCompression:
+		d.window = make([]byte, maxStoreBlockSize)
+		d.fill = (*compressor).fillBlock
+		d.step = (*compressor).store
+	case level == ConstantCompression:
+		d.w.logNewTablePenalty = 10
+		d.window = make([]byte, 32<<10)
+		d.fill = (*compressor).fillBlock
+		d.step = (*compressor).storeHuff
+	case level == DefaultCompression:
+		level = 5
+		fallthrough
+	case level >= 1 && level <= 6:
+		d.w.logNewTablePenalty = 7
+		d.fast = newFastEnc(level)
+		d.window = make([]byte, maxStoreBlockSize)
+		d.fill = (*compressor).fillBlock
+		d.step = (*compressor).storeFast
+	case 7 <= level && level <= 9:
+		d.w.logNewTablePenalty = 8
+		d.state = &advancedState{}
+		d.compressionLevel = levels[level]
+		d.initDeflate()
+		d.fill = (*compressor).fillDeflate
+		d.step = (*compressor).deflateLazy
+	case -level >= MinCustomWindowSize && -level <= MaxCustomWindowSize:
+		d.w.logNewTablePenalty = 7
+		d.fast = &fastEncL5Window{maxOffset: int32(-level), cur: maxStoreBlockSize}
+		d.window = make([]byte, maxStoreBlockSize)
+		d.fill = (*compressor).fillBlock
+		d.step = (*compressor).storeFast
+	default:
+		return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
+	}
+	d.level = level
+	return nil
+}
+
+// reset the state of the compressor.
+func (d *compressor) reset(w io.Writer) {
+	d.w.reset(w)
+	d.sync = false
+	d.err = nil
+	// We only need to reset a few things for Snappy.
+	if d.fast != nil {
+		d.fast.Reset()
+		d.windowEnd = 0
+		d.tokens.Reset()
+		return
+	}
+	switch d.compressionLevel.chain {
+	case 0:
+		// level was NoCompression or ConstantCompression.
+		d.windowEnd = 0
+	default:
+		s := d.state
+		s.chainHead = -1
+		for i := range s.hashHead {
+			s.hashHead[i] = 0
+		}
+		for i := range s.hashPrev {
+			s.hashPrev[i] = 0
+		}
+		s.hashOffset = 1
+		s.index, d.windowEnd = 0, 0
+		d.blockStart, d.byteAvailable = 0, false
+		d.tokens.Reset()
+		s.length = minMatchLength - 1
+		s.offset = 0
+		s.ii = 0
+		s.maxInsertIndex = 0
+	}
+}
+
+func (d *compressor) close() error {
+	if d.err != nil {
+		return d.err
+	}
+	d.sync = true
+	d.step(d)
+	if d.err != nil {
+		return d.err
+	}
+	if d.w.writeStoredHeader(0, true); d.w.err != nil {
+		return d.w.err
+	}
+	d.w.flush()
+	d.w.reset(nil)
+	return d.w.err
+}
+
+// NewWriter returns a new Writer compressing data at the given level.
+// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
+// higher levels typically run slower but compress more.
+// Level 0 (NoCompression) does not attempt any compression; it only adds the
+// necessary DEFLATE framing.
+// Level -1 (DefaultCompression) uses the default compression level.
+// Level -2 (ConstantCompression) will use Huffman compression only, giving
+// a very fast compression for all types of input, but sacrificing considerable
+// compression efficiency.
+//
+// If level is in the range [-2, 9] then the error returned will be nil.
+// Otherwise the error returned will be non-nil.
+func NewWriter(w io.Writer, level int) (*Writer, error) {
+	var dw Writer
+	if err := dw.d.init(w, level); err != nil {
+		return nil, err
+	}
+	return &dw, nil
+}
+
+// NewWriterDict is like NewWriter but initializes the new
+// Writer with a preset dictionary.  The returned Writer behaves
+// as if the dictionary had been written to it without producing
+// any compressed output.  The compressed data written to w
+// can only be decompressed by a Reader initialized with the
+// same dictionary.
+func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
+	zw, err := NewWriter(w, level)
+	if err != nil {
+		return nil, err
+	}
+	zw.d.fillWindow(dict)
+	zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
+	return zw, err
+}
+
+// MinCustomWindowSize is the minimum window size that can be sent to NewWriterWindow.
+const MinCustomWindowSize = 32
+
+// MaxCustomWindowSize is the maximum custom window that can be sent to NewWriterWindow.
+const MaxCustomWindowSize = windowSize
+
+// NewWriterWindow returns a new Writer compressing data with a custom window size.
+// windowSize must be from MinCustomWindowSize to MaxCustomWindowSize.
+func NewWriterWindow(w io.Writer, windowSize int) (*Writer, error) {
+	if windowSize < MinCustomWindowSize {
+		return nil, errors.New("flate: requested window size less than MinWindowSize")
+	}
+	if windowSize > MaxCustomWindowSize {
+		return nil, errors.New("flate: requested window size bigger than MaxCustomWindowSize")
+	}
+	var dw Writer
+	if err := dw.d.init(w, -windowSize); err != nil {
+		return nil, err
+	}
+	return &dw, nil
+}
+
+// A Writer takes data written to it and writes the compressed
+// form of that data to an underlying writer (see NewWriter).
+type Writer struct {
+	d    compressor
+	dict []byte
+}
+
+// Write writes data to w, which will eventually write the
+// compressed form of data to its underlying writer.
+func (w *Writer) Write(data []byte) (n int, err error) {
+	return w.d.write(data)
+}
+
+// Flush flushes any pending data to the underlying writer.
+// It is useful mainly in compressed network protocols, to ensure that
+// a remote reader has enough data to reconstruct a packet.
+// Flush does not return until the data has been written.
+// Calling Flush when there is no pending data still causes the Writer
+// to emit a sync marker of at least 4 bytes.
+// If the underlying writer returns an error, Flush returns that error.
+//
+// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
+func (w *Writer) Flush() error {
+	// For more about flushing:
+	// http://www.bolet.org/~pornin/deflate-flush.html
+	return w.d.syncFlush()
+}
+
+// Close flushes and closes the writer.
+func (w *Writer) Close() error {
+	return w.d.close()
+}
+
+// Reset discards the writer's state and makes it equivalent to
+// the result of NewWriter or NewWriterDict called with dst
+// and w's level and dictionary.
+func (w *Writer) Reset(dst io.Writer) {
+	if len(w.dict) > 0 {
+		// w was created with NewWriterDict
+		w.d.reset(dst)
+		if dst != nil {
+			w.d.fillWindow(w.dict)
+		}
+	} else {
+		// w was created with NewWriter
+		w.d.reset(dst)
+	}
+}
+
+// ResetDict discards the writer's state and makes it equivalent to
+// the result of NewWriter or NewWriterDict called with dst
+// and w's level, but sets a specific dictionary.
+func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
+	w.dict = dict
+	w.d.reset(dst)
+	w.d.fillWindow(w.dict)
+}