[VOL-5486] Upgrade library versions

Change-Id: I8b4e88699e03f44ee13e467867f45ae3f0a63c4b
Signed-off-by: Abhay Kumar <abhay.kumar@radisys.com>
diff --git a/vendor/go.etcd.io/raft/v3/raft.go b/vendor/go.etcd.io/raft/v3/raft.go
new file mode 100644
index 0000000..94c2363
--- /dev/null
+++ b/vendor/go.etcd.io/raft/v3/raft.go
@@ -0,0 +1,2158 @@
+// Copyright 2015 The etcd Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//     http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package raft
+
+import (
+	"bytes"
+	"crypto/rand"
+	"errors"
+	"fmt"
+	"math"
+	"math/big"
+	"slices"
+	"strings"
+	"sync"
+
+	"go.etcd.io/raft/v3/confchange"
+	"go.etcd.io/raft/v3/quorum"
+	pb "go.etcd.io/raft/v3/raftpb"
+	"go.etcd.io/raft/v3/tracker"
+)
+
+const (
+	// None is a placeholder node ID used when there is no leader.
+	None uint64 = 0
+	// LocalAppendThread is a reference to a local thread that saves unstable
+	// log entries and snapshots to stable storage. The identifier is used as a
+	// target for MsgStorageAppend messages when AsyncStorageWrites is enabled.
+	LocalAppendThread uint64 = math.MaxUint64
+	// LocalApplyThread is a reference to a local thread that applies committed
+	// log entries to the local state machine. The identifier is used as a
+	// target for MsgStorageApply messages when AsyncStorageWrites is enabled.
+	LocalApplyThread uint64 = math.MaxUint64 - 1
+)
+
+// Possible values for StateType.
+const (
+	StateFollower StateType = iota
+	StateCandidate
+	StateLeader
+	StatePreCandidate
+	numStates
+)
+
+type ReadOnlyOption int
+
+const (
+	// ReadOnlySafe guarantees the linearizability of the read only request by
+	// communicating with the quorum. It is the default and suggested option.
+	ReadOnlySafe ReadOnlyOption = iota
+	// ReadOnlyLeaseBased ensures linearizability of the read only request by
+	// relying on the leader lease. It can be affected by clock drift.
+	// If the clock drift is unbounded, leader might keep the lease longer than it
+	// should (clock can move backward/pause without any bound). ReadIndex is not safe
+	// in that case.
+	ReadOnlyLeaseBased
+)
+
+// Possible values for CampaignType
+const (
+	// campaignPreElection represents the first phase of a normal election when
+	// Config.PreVote is true.
+	campaignPreElection CampaignType = "CampaignPreElection"
+	// campaignElection represents a normal (time-based) election (the second phase
+	// of the election when Config.PreVote is true).
+	campaignElection CampaignType = "CampaignElection"
+	// campaignTransfer represents the type of leader transfer
+	campaignTransfer CampaignType = "CampaignTransfer"
+)
+
+const noLimit = math.MaxUint64
+
+// ErrProposalDropped is returned when the proposal is ignored by some cases,
+// so that the proposer can be notified and fail fast.
+var ErrProposalDropped = errors.New("raft proposal dropped")
+
+// lockedRand is a small wrapper around rand.Rand to provide
+// synchronization among multiple raft groups. Only the methods needed
+// by the code are exposed (e.g. Intn).
+type lockedRand struct {
+	mu sync.Mutex
+}
+
+func (r *lockedRand) Intn(n int) int {
+	r.mu.Lock()
+	v, _ := rand.Int(rand.Reader, big.NewInt(int64(n)))
+	r.mu.Unlock()
+	return int(v.Int64())
+}
+
+var globalRand = &lockedRand{}
+
+// CampaignType represents the type of campaigning
+// the reason we use the type of string instead of uint64
+// is because it's simpler to compare and fill in raft entries
+type CampaignType string
+
+// StateType represents the role of a node in a cluster.
+type StateType uint64
+
+var stmap = [...]string{
+	"StateFollower",
+	"StateCandidate",
+	"StateLeader",
+	"StatePreCandidate",
+}
+
+func (st StateType) String() string {
+	return stmap[st]
+}
+
+// Config contains the parameters to start a raft.
+type Config struct {
+	// ID is the identity of the local raft. ID cannot be 0.
+	ID uint64
+
+	// ElectionTick is the number of Node.Tick invocations that must pass between
+	// elections. That is, if a follower does not receive any message from the
+	// leader of current term before ElectionTick has elapsed, it will become
+	// candidate and start an election. ElectionTick must be greater than
+	// HeartbeatTick. We suggest ElectionTick = 10 * HeartbeatTick to avoid
+	// unnecessary leader switching.
+	ElectionTick int
+	// HeartbeatTick is the number of Node.Tick invocations that must pass between
+	// heartbeats. That is, a leader sends heartbeat messages to maintain its
+	// leadership every HeartbeatTick ticks.
+	HeartbeatTick int
+
+	// Storage is the storage for raft. raft generates entries and states to be
+	// stored in storage. raft reads the persisted entries and states out of
+	// Storage when it needs. raft reads out the previous state and configuration
+	// out of storage when restarting.
+	Storage Storage
+	// Applied is the last applied index. It should only be set when restarting
+	// raft. raft will not return entries to the application smaller or equal to
+	// Applied. If Applied is unset when restarting, raft might return previous
+	// applied entries. This is a very application dependent configuration.
+	Applied uint64
+
+	// AsyncStorageWrites configures the raft node to write to its local storage
+	// (raft log and state machine) using a request/response message passing
+	// interface instead of the default Ready/Advance function call interface.
+	// Local storage messages can be pipelined and processed asynchronously
+	// (with respect to Ready iteration), facilitating reduced interference
+	// between Raft proposals and increased batching of log appends and state
+	// machine application. As a result, use of asynchronous storage writes can
+	// reduce end-to-end commit latency and increase maximum throughput.
+	//
+	// When true, the Ready.Message slice will include MsgStorageAppend and
+	// MsgStorageApply messages. The messages will target a LocalAppendThread
+	// and a LocalApplyThread, respectively. Messages to the same target must be
+	// reliably processed in order. In other words, they can't be dropped (like
+	// messages over the network) and those targeted at the same thread can't be
+	// reordered. Messages to different targets can be processed in any order.
+	//
+	// MsgStorageAppend carries Raft log entries to append, election votes /
+	// term changes / updated commit indexes to persist, and snapshots to apply.
+	// All writes performed in service of a MsgStorageAppend must be durable
+	// before response messages are delivered. However, if the MsgStorageAppend
+	// carries no response messages, durability is not required. The message
+	// assumes the role of the Entries, HardState, and Snapshot fields in Ready.
+	//
+	// MsgStorageApply carries committed entries to apply. Writes performed in
+	// service of a MsgStorageApply need not be durable before response messages
+	// are delivered. The message assumes the role of the CommittedEntries field
+	// in Ready.
+	//
+	// Local messages each carry one or more response messages which should be
+	// delivered after the corresponding storage write has been completed. These
+	// responses may target the same node or may target other nodes. The storage
+	// threads are not responsible for understanding the response messages, only
+	// for delivering them to the correct target after performing the storage
+	// write.
+	AsyncStorageWrites bool
+
+	// MaxSizePerMsg limits the max byte size of each append message. Smaller
+	// value lowers the raft recovery cost(initial probing and message lost
+	// during normal operation). On the other side, it might affect the
+	// throughput during normal replication. Note: math.MaxUint64 for unlimited,
+	// 0 for at most one entry per message.
+	MaxSizePerMsg uint64
+	// MaxCommittedSizePerReady limits the size of the committed entries which
+	// can be applying at the same time.
+	//
+	// Despite its name (preserved for compatibility), this quota applies across
+	// Ready structs to encompass all outstanding entries in unacknowledged
+	// MsgStorageApply messages when AsyncStorageWrites is enabled.
+	MaxCommittedSizePerReady uint64
+	// MaxUncommittedEntriesSize limits the aggregate byte size of the
+	// uncommitted entries that may be appended to a leader's log. Once this
+	// limit is exceeded, proposals will begin to return ErrProposalDropped
+	// errors. Note: 0 for no limit.
+	MaxUncommittedEntriesSize uint64
+	// MaxInflightMsgs limits the max number of in-flight append messages during
+	// optimistic replication phase. The application transportation layer usually
+	// has its own sending buffer over TCP/UDP. Setting MaxInflightMsgs to avoid
+	// overflowing that sending buffer. TODO (xiangli): feedback to application to
+	// limit the proposal rate?
+	MaxInflightMsgs int
+	// MaxInflightBytes limits the number of in-flight bytes in append messages.
+	// Complements MaxInflightMsgs. Ignored if zero.
+	//
+	// This effectively bounds the bandwidth-delay product. Note that especially
+	// in high-latency deployments setting this too low can lead to a dramatic
+	// reduction in throughput. For example, with a peer that has a round-trip
+	// latency of 100ms to the leader and this setting is set to 1 MB, there is a
+	// throughput limit of 10 MB/s for this group. With RTT of 400ms, this drops
+	// to 2.5 MB/s. See Little's law to understand the maths behind.
+	MaxInflightBytes uint64
+
+	// CheckQuorum specifies if the leader should check quorum activity. Leader
+	// steps down when quorum is not active for an electionTimeout.
+	CheckQuorum bool
+
+	// PreVote enables the Pre-Vote algorithm described in raft thesis section
+	// 9.6. This prevents disruption when a node that has been partitioned away
+	// rejoins the cluster.
+	PreVote bool
+
+	// ReadOnlyOption specifies how the read only request is processed.
+	//
+	// ReadOnlySafe guarantees the linearizability of the read only request by
+	// communicating with the quorum. It is the default and suggested option.
+	//
+	// ReadOnlyLeaseBased ensures linearizability of the read only request by
+	// relying on the leader lease. It can be affected by clock drift.
+	// If the clock drift is unbounded, leader might keep the lease longer than it
+	// should (clock can move backward/pause without any bound). ReadIndex is not safe
+	// in that case.
+	// CheckQuorum MUST be enabled if ReadOnlyOption is ReadOnlyLeaseBased.
+	ReadOnlyOption ReadOnlyOption
+
+	// Logger is the logger used for raft log. For multinode which can host
+	// multiple raft group, each raft group can have its own logger
+	Logger Logger
+
+	// DisableProposalForwarding set to true means that followers will drop
+	// proposals, rather than forwarding them to the leader. One use case for
+	// this feature would be in a situation where the Raft leader is used to
+	// compute the data of a proposal, for example, adding a timestamp from a
+	// hybrid logical clock to data in a monotonically increasing way. Forwarding
+	// should be disabled to prevent a follower with an inaccurate hybrid
+	// logical clock from assigning the timestamp and then forwarding the data
+	// to the leader.
+	DisableProposalForwarding bool
+
+	// DisableConfChangeValidation turns off propose-time verification of
+	// configuration changes against the currently active configuration of the
+	// raft instance. These checks are generally sensible (cannot leave a joint
+	// config unless in a joint config, et cetera) but they have false positives
+	// because the active configuration may not be the most recent
+	// configuration. This is because configurations are activated during log
+	// application, and even the leader can trail log application by an
+	// unbounded number of entries.
+	// Symmetrically, the mechanism has false negatives - because the check may
+	// not run against the "actual" config that will be the predecessor of the
+	// newly proposed one, the check may pass but the new config may be invalid
+	// when it is being applied. In other words, the checks are best-effort.
+	//
+	// Users should *not* use this option unless they have a reliable mechanism
+	// (above raft) that serializes and verifies configuration changes. If an
+	// invalid configuration change enters the log and gets applied, a panic
+	// will result.
+	//
+	// This option may be removed once false positives are no longer possible.
+	// See: https://github.com/etcd-io/raft/issues/80
+	DisableConfChangeValidation bool
+
+	// StepDownOnRemoval makes the leader step down when it is removed from the
+	// group or demoted to a learner.
+	//
+	// This behavior will become unconditional in the future. See:
+	// https://github.com/etcd-io/raft/issues/83
+	StepDownOnRemoval bool
+
+	// raft state tracer
+	TraceLogger TraceLogger
+}
+
+func (c *Config) validate() error {
+	if c.ID == None {
+		return errors.New("cannot use none as id")
+	}
+	if IsLocalMsgTarget(c.ID) {
+		return errors.New("cannot use local target as id")
+	}
+
+	if c.HeartbeatTick <= 0 {
+		return errors.New("heartbeat tick must be greater than 0")
+	}
+
+	if c.ElectionTick <= c.HeartbeatTick {
+		return errors.New("election tick must be greater than heartbeat tick")
+	}
+
+	if c.Storage == nil {
+		return errors.New("storage cannot be nil")
+	}
+
+	if c.MaxUncommittedEntriesSize == 0 {
+		c.MaxUncommittedEntriesSize = noLimit
+	}
+
+	// default MaxCommittedSizePerReady to MaxSizePerMsg because they were
+	// previously the same parameter.
+	if c.MaxCommittedSizePerReady == 0 {
+		c.MaxCommittedSizePerReady = c.MaxSizePerMsg
+	}
+
+	if c.MaxInflightMsgs <= 0 {
+		return errors.New("max inflight messages must be greater than 0")
+	}
+	if c.MaxInflightBytes == 0 {
+		c.MaxInflightBytes = noLimit
+	} else if c.MaxInflightBytes < c.MaxSizePerMsg {
+		return errors.New("max inflight bytes must be >= max message size")
+	}
+
+	if c.Logger == nil {
+		c.Logger = getLogger()
+	}
+
+	if c.ReadOnlyOption == ReadOnlyLeaseBased && !c.CheckQuorum {
+		return errors.New("CheckQuorum must be enabled when ReadOnlyOption is ReadOnlyLeaseBased")
+	}
+
+	return nil
+}
+
+type raft struct {
+	id uint64
+
+	Term uint64
+	Vote uint64
+
+	readStates []ReadState
+
+	// the log
+	raftLog *raftLog
+
+	maxMsgSize         entryEncodingSize
+	maxUncommittedSize entryPayloadSize
+
+	trk tracker.ProgressTracker
+
+	state StateType
+
+	// isLearner is true if the local raft node is a learner.
+	isLearner bool
+
+	// msgs contains the list of messages that should be sent out immediately to
+	// other nodes.
+	//
+	// Messages in this list must target other nodes.
+	msgs []pb.Message
+	// msgsAfterAppend contains the list of messages that should be sent after
+	// the accumulated unstable state (e.g. term, vote, []entry, and snapshot)
+	// has been persisted to durable storage. This includes waiting for any
+	// unstable state that is already in the process of being persisted (i.e.
+	// has already been handed out in a prior Ready struct) to complete.
+	//
+	// Messages in this list may target other nodes or may target this node.
+	//
+	// Messages in this list have the type MsgAppResp, MsgVoteResp, or
+	// MsgPreVoteResp. See the comment in raft.send for details.
+	msgsAfterAppend []pb.Message
+
+	// the leader id
+	lead uint64
+	// leadTransferee is id of the leader transfer target when its value is not zero.
+	// Follow the procedure defined in raft thesis 3.10.
+	leadTransferee uint64
+	// Only one conf change may be pending (in the log, but not yet
+	// applied) at a time. This is enforced via pendingConfIndex, which
+	// is set to a value >= the log index of the latest pending
+	// configuration change (if any). Config changes are only allowed to
+	// be proposed if the leader's applied index is greater than this
+	// value.
+	pendingConfIndex uint64
+	// disableConfChangeValidation is Config.DisableConfChangeValidation,
+	// see there for details.
+	disableConfChangeValidation bool
+	// an estimate of the size of the uncommitted tail of the Raft log. Used to
+	// prevent unbounded log growth. Only maintained by the leader. Reset on
+	// term changes.
+	uncommittedSize entryPayloadSize
+
+	readOnly *readOnly
+
+	// number of ticks since it reached last electionTimeout when it is leader
+	// or candidate.
+	// number of ticks since it reached last electionTimeout or received a
+	// valid message from current leader when it is a follower.
+	electionElapsed int
+
+	// number of ticks since it reached last heartbeatTimeout.
+	// only leader keeps heartbeatElapsed.
+	heartbeatElapsed int
+
+	checkQuorum bool
+	preVote     bool
+
+	heartbeatTimeout int
+	electionTimeout  int
+	// randomizedElectionTimeout is a random number between
+	// [electiontimeout, 2 * electiontimeout - 1]. It gets reset
+	// when raft changes its state to follower or candidate.
+	randomizedElectionTimeout int
+	disableProposalForwarding bool
+	stepDownOnRemoval         bool
+
+	tick func()
+	step stepFunc
+
+	logger Logger
+
+	// pendingReadIndexMessages is used to store messages of type MsgReadIndex
+	// that can't be answered as new leader didn't committed any log in
+	// current term. Those will be handled as fast as first log is committed in
+	// current term.
+	pendingReadIndexMessages []pb.Message
+
+	traceLogger TraceLogger
+}
+
+func newRaft(c *Config) *raft {
+	if err := c.validate(); err != nil {
+		panic(err.Error())
+	}
+	raftlog := newLogWithSize(c.Storage, c.Logger, entryEncodingSize(c.MaxCommittedSizePerReady))
+	hs, cs, err := c.Storage.InitialState()
+	if err != nil {
+		panic(err) // TODO(bdarnell)
+	}
+
+	r := &raft{
+		id:                          c.ID,
+		lead:                        None,
+		isLearner:                   false,
+		raftLog:                     raftlog,
+		maxMsgSize:                  entryEncodingSize(c.MaxSizePerMsg),
+		maxUncommittedSize:          entryPayloadSize(c.MaxUncommittedEntriesSize),
+		trk:                         tracker.MakeProgressTracker(c.MaxInflightMsgs, c.MaxInflightBytes),
+		electionTimeout:             c.ElectionTick,
+		heartbeatTimeout:            c.HeartbeatTick,
+		logger:                      c.Logger,
+		checkQuorum:                 c.CheckQuorum,
+		preVote:                     c.PreVote,
+		readOnly:                    newReadOnly(c.ReadOnlyOption),
+		disableProposalForwarding:   c.DisableProposalForwarding,
+		disableConfChangeValidation: c.DisableConfChangeValidation,
+		stepDownOnRemoval:           c.StepDownOnRemoval,
+		traceLogger:                 c.TraceLogger,
+	}
+
+	traceInitState(r)
+
+	lastID := r.raftLog.lastEntryID()
+	cfg, trk, err := confchange.Restore(confchange.Changer{
+		Tracker:   r.trk,
+		LastIndex: lastID.index,
+	}, cs)
+	if err != nil {
+		panic(err)
+	}
+	assertConfStatesEquivalent(r.logger, cs, r.switchToConfig(cfg, trk))
+
+	if !IsEmptyHardState(hs) {
+		r.loadState(hs)
+	}
+	if c.Applied > 0 {
+		raftlog.appliedTo(c.Applied, 0 /* size */)
+	}
+	r.becomeFollower(r.Term, None)
+
+	var nodesStrs []string
+	for _, n := range r.trk.VoterNodes() {
+		nodesStrs = append(nodesStrs, fmt.Sprintf("%x", n))
+	}
+
+	// TODO(pav-kv): it should be ok to simply print %+v for lastID.
+	r.logger.Infof("newRaft %x [peers: [%s], term: %d, commit: %d, applied: %d, lastindex: %d, lastterm: %d]",
+		r.id, strings.Join(nodesStrs, ","), r.Term, r.raftLog.committed, r.raftLog.applied, lastID.index, lastID.term)
+	return r
+}
+
+func (r *raft) hasLeader() bool { return r.lead != None }
+
+func (r *raft) softState() SoftState { return SoftState{Lead: r.lead, RaftState: r.state} }
+
+func (r *raft) hardState() pb.HardState {
+	return pb.HardState{
+		Term:   r.Term,
+		Vote:   r.Vote,
+		Commit: r.raftLog.committed,
+	}
+}
+
+// send schedules persisting state to a stable storage and AFTER that
+// sending the message (as part of next Ready message processing).
+func (r *raft) send(m pb.Message) {
+	if m.From == None {
+		m.From = r.id
+	}
+	if m.Type == pb.MsgVote || m.Type == pb.MsgVoteResp || m.Type == pb.MsgPreVote || m.Type == pb.MsgPreVoteResp {
+		if m.Term == 0 {
+			// All {pre-,}campaign messages need to have the term set when
+			// sending.
+			// - MsgVote: m.Term is the term the node is campaigning for,
+			//   non-zero as we increment the term when campaigning.
+			// - MsgVoteResp: m.Term is the new r.Term if the MsgVote was
+			//   granted, non-zero for the same reason MsgVote is
+			// - MsgPreVote: m.Term is the term the node will campaign,
+			//   non-zero as we use m.Term to indicate the next term we'll be
+			//   campaigning for
+			// - MsgPreVoteResp: m.Term is the term received in the original
+			//   MsgPreVote if the pre-vote was granted, non-zero for the
+			//   same reasons MsgPreVote is
+			r.logger.Panicf("term should be set when sending %s", m.Type)
+		}
+	} else {
+		if m.Term != 0 {
+			r.logger.Panicf("term should not be set when sending %s (was %d)", m.Type, m.Term)
+		}
+		// do not attach term to MsgProp, MsgReadIndex
+		// proposals are a way to forward to the leader and
+		// should be treated as local message.
+		// MsgReadIndex is also forwarded to leader.
+		if m.Type != pb.MsgProp && m.Type != pb.MsgReadIndex {
+			m.Term = r.Term
+		}
+	}
+	if m.Type == pb.MsgAppResp || m.Type == pb.MsgVoteResp || m.Type == pb.MsgPreVoteResp {
+		// If async storage writes are enabled, messages added to the msgs slice
+		// are allowed to be sent out before unstable state (e.g. log entry
+		// writes and election votes) have been durably synced to the local
+		// disk.
+		//
+		// For most message types, this is not an issue. However, response
+		// messages that relate to "voting" on either leader election or log
+		// appends require durability before they can be sent. It would be
+		// incorrect to publish a vote in an election before that vote has been
+		// synced to stable storage locally. Similarly, it would be incorrect to
+		// acknowledge a log append to the leader before that entry has been
+		// synced to stable storage locally.
+		//
+		// Per the Raft thesis, section 3.8 Persisted state and server restarts:
+		//
+		// > Raft servers must persist enough information to stable storage to
+		// > survive server restarts safely. In particular, each server persists
+		// > its current term and vote; this is necessary to prevent the server
+		// > from voting twice in the same term or replacing log entries from a
+		// > newer leader with those from a deposed leader. Each server also
+		// > persists new log entries before they are counted towards the entries’
+		// > commitment; this prevents committed entries from being lost or
+		// > “uncommitted” when servers restart
+		//
+		// To enforce this durability requirement, these response messages are
+		// queued to be sent out as soon as the current collection of unstable
+		// state (the state that the response message was predicated upon) has
+		// been durably persisted. This unstable state may have already been
+		// passed to a Ready struct whose persistence is in progress or may be
+		// waiting for the next Ready struct to begin being written to Storage.
+		// These messages must wait for all of this state to be durable before
+		// being published.
+		//
+		// Rejected responses (m.Reject == true) present an interesting case
+		// where the durability requirement is less unambiguous. A rejection may
+		// be predicated upon unstable state. For instance, a node may reject a
+		// vote for one peer because it has already begun syncing its vote for
+		// another peer. Or it may reject a vote from one peer because it has
+		// unstable log entries that indicate that the peer is behind on its
+		// log. In these cases, it is likely safe to send out the rejection
+		// response immediately without compromising safety in the presence of a
+		// server restart. However, because these rejections are rare and
+		// because the safety of such behavior has not been formally verified,
+		// we err on the side of safety and omit a `&& !m.Reject` condition
+		// above.
+		r.msgsAfterAppend = append(r.msgsAfterAppend, m)
+		traceSendMessage(r, &m)
+	} else {
+		if m.To == r.id {
+			r.logger.Panicf("message should not be self-addressed when sending %s", m.Type)
+		}
+		r.msgs = append(r.msgs, m)
+		traceSendMessage(r, &m)
+	}
+}
+
+// sendAppend sends an append RPC with new entries (if any) and the
+// current commit index to the given peer.
+func (r *raft) sendAppend(to uint64) {
+	r.maybeSendAppend(to, true)
+}
+
+// maybeSendAppend sends an append RPC with new entries to the given peer,
+// if necessary. Returns true if a message was sent. The sendIfEmpty
+// argument controls whether messages with no entries will be sent
+// ("empty" messages are useful to convey updated Commit indexes, but
+// are undesirable when we're sending multiple messages in a batch).
+//
+// TODO(pav-kv): make invocation of maybeSendAppend stateless. The Progress
+// struct contains all the state necessary for deciding whether to send a
+// message.
+func (r *raft) maybeSendAppend(to uint64, sendIfEmpty bool) bool {
+	pr := r.trk.Progress[to]
+	if pr.IsPaused() {
+		return false
+	}
+
+	prevIndex := pr.Next - 1
+	prevTerm, err := r.raftLog.term(prevIndex)
+	if err != nil {
+		// The log probably got truncated at >= pr.Next, so we can't catch up the
+		// follower log anymore. Send a snapshot instead.
+		return r.maybeSendSnapshot(to, pr)
+	}
+
+	var ents []pb.Entry
+	// In a throttled StateReplicate only send empty MsgApp, to ensure progress.
+	// Otherwise, if we had a full Inflights and all inflight messages were in
+	// fact dropped, replication to that follower would stall. Instead, an empty
+	// MsgApp will eventually reach the follower (heartbeats responses prompt the
+	// leader to send an append), allowing it to be acked or rejected, both of
+	// which will clear out Inflights.
+	if pr.State != tracker.StateReplicate || !pr.Inflights.Full() {
+		ents, err = r.raftLog.entries(pr.Next, r.maxMsgSize)
+	}
+	if len(ents) == 0 && !sendIfEmpty {
+		return false
+	}
+	// TODO(pav-kv): move this check up to where err is returned.
+	if err != nil { // send a snapshot if we failed to get the entries
+		return r.maybeSendSnapshot(to, pr)
+	}
+
+	// Send the actual MsgApp otherwise, and update the progress accordingly.
+	r.send(pb.Message{
+		To:      to,
+		Type:    pb.MsgApp,
+		Index:   prevIndex,
+		LogTerm: prevTerm,
+		Entries: ents,
+		Commit:  r.raftLog.committed,
+	})
+	pr.SentEntries(len(ents), uint64(payloadsSize(ents)))
+	pr.SentCommit(r.raftLog.committed)
+	return true
+}
+
+// maybeSendSnapshot fetches a snapshot from Storage, and sends it to the given
+// node. Returns true iff the snapshot message has been emitted successfully.
+func (r *raft) maybeSendSnapshot(to uint64, pr *tracker.Progress) bool {
+	if !pr.RecentActive {
+		r.logger.Debugf("ignore sending snapshot to %x since it is not recently active", to)
+		return false
+	}
+
+	snapshot, err := r.raftLog.snapshot()
+	if err != nil {
+		if err == ErrSnapshotTemporarilyUnavailable {
+			r.logger.Debugf("%x failed to send snapshot to %x because snapshot is temporarily unavailable", r.id, to)
+			return false
+		}
+		panic(err) // TODO(bdarnell)
+	}
+	if IsEmptySnap(snapshot) {
+		panic("need non-empty snapshot")
+	}
+	sindex, sterm := snapshot.Metadata.Index, snapshot.Metadata.Term
+	r.logger.Debugf("%x [firstindex: %d, commit: %d] sent snapshot[index: %d, term: %d] to %x [%s]",
+		r.id, r.raftLog.firstIndex(), r.raftLog.committed, sindex, sterm, to, pr)
+	pr.BecomeSnapshot(sindex)
+	r.logger.Debugf("%x paused sending replication messages to %x [%s]", r.id, to, pr)
+
+	r.send(pb.Message{To: to, Type: pb.MsgSnap, Snapshot: &snapshot})
+	return true
+}
+
+// sendHeartbeat sends a heartbeat RPC to the given peer.
+func (r *raft) sendHeartbeat(to uint64, ctx []byte) {
+	pr := r.trk.Progress[to]
+	// Attach the commit as min(to.matched, r.committed).
+	// When the leader sends out heartbeat message,
+	// the receiver(follower) might not be matched with the leader
+	// or it might not have all the committed entries.
+	// The leader MUST NOT forward the follower's commit to
+	// an unmatched index.
+	commit := min(pr.Match, r.raftLog.committed)
+	r.send(pb.Message{
+		To:      to,
+		Type:    pb.MsgHeartbeat,
+		Commit:  commit,
+		Context: ctx,
+	})
+	pr.SentCommit(commit)
+}
+
+// bcastAppend sends RPC, with entries to all peers that are not up-to-date
+// according to the progress recorded in r.trk.
+func (r *raft) bcastAppend() {
+	r.trk.Visit(func(id uint64, _ *tracker.Progress) {
+		if id == r.id {
+			return
+		}
+		r.sendAppend(id)
+	})
+}
+
+// bcastHeartbeat sends RPC, without entries to all the peers.
+func (r *raft) bcastHeartbeat() {
+	lastCtx := r.readOnly.lastPendingRequestCtx()
+	if len(lastCtx) == 0 {
+		r.bcastHeartbeatWithCtx(nil)
+	} else {
+		r.bcastHeartbeatWithCtx([]byte(lastCtx))
+	}
+}
+
+func (r *raft) bcastHeartbeatWithCtx(ctx []byte) {
+	r.trk.Visit(func(id uint64, _ *tracker.Progress) {
+		if id == r.id {
+			return
+		}
+		r.sendHeartbeat(id, ctx)
+	})
+}
+
+func (r *raft) appliedTo(index uint64, size entryEncodingSize) {
+	oldApplied := r.raftLog.applied
+	newApplied := max(index, oldApplied)
+	r.raftLog.appliedTo(newApplied, size)
+
+	if r.trk.Config.AutoLeave && newApplied >= r.pendingConfIndex && r.state == StateLeader {
+		// If the current (and most recent, at least for this leader's term)
+		// configuration should be auto-left, initiate that now. We use a
+		// nil Data which unmarshals into an empty ConfChangeV2 and has the
+		// benefit that appendEntry can never refuse it based on its size
+		// (which registers as zero).
+		m, err := confChangeToMsg(nil)
+		if err != nil {
+			panic(err)
+		}
+		// NB: this proposal can't be dropped due to size, but can be
+		// dropped if a leadership transfer is in progress. We'll keep
+		// checking this condition on each applied entry, so either the
+		// leadership transfer will succeed and the new leader will leave
+		// the joint configuration, or the leadership transfer will fail,
+		// and we will propose the config change on the next advance.
+		if err := r.Step(m); err != nil {
+			r.logger.Debugf("not initiating automatic transition out of joint configuration %s: %v", r.trk.Config, err)
+		} else {
+			r.logger.Infof("initiating automatic transition out of joint configuration %s", r.trk.Config)
+		}
+	}
+}
+
+func (r *raft) appliedSnap(snap *pb.Snapshot) {
+	index := snap.Metadata.Index
+	r.raftLog.stableSnapTo(index)
+	r.appliedTo(index, 0 /* size */)
+}
+
+// maybeCommit attempts to advance the commit index. Returns true if the commit
+// index changed (in which case the caller should call r.bcastAppend). This can
+// only be called in StateLeader.
+func (r *raft) maybeCommit() bool {
+	defer traceCommit(r)
+
+	return r.raftLog.maybeCommit(entryID{term: r.Term, index: r.trk.Committed()})
+}
+
+func (r *raft) reset(term uint64) {
+	if r.Term != term {
+		r.Term = term
+		r.Vote = None
+	}
+	r.lead = None
+
+	r.electionElapsed = 0
+	r.heartbeatElapsed = 0
+	r.resetRandomizedElectionTimeout()
+
+	r.abortLeaderTransfer()
+
+	r.trk.ResetVotes()
+	r.trk.Visit(func(id uint64, pr *tracker.Progress) {
+		*pr = tracker.Progress{
+			Match:     0,
+			Next:      r.raftLog.lastIndex() + 1,
+			Inflights: tracker.NewInflights(r.trk.MaxInflight, r.trk.MaxInflightBytes),
+			IsLearner: pr.IsLearner,
+		}
+		if id == r.id {
+			pr.Match = r.raftLog.lastIndex()
+		}
+	})
+
+	r.pendingConfIndex = 0
+	r.uncommittedSize = 0
+	r.readOnly = newReadOnly(r.readOnly.option)
+}
+
+func (r *raft) appendEntry(es ...pb.Entry) (accepted bool) {
+	li := r.raftLog.lastIndex()
+	for i := range es {
+		es[i].Term = r.Term
+		es[i].Index = li + 1 + uint64(i)
+	}
+	// Track the size of this uncommitted proposal.
+	if !r.increaseUncommittedSize(es) {
+		r.logger.Warningf(
+			"%x appending new entries to log would exceed uncommitted entry size limit; dropping proposal",
+			r.id,
+		)
+		// Drop the proposal.
+		return false
+	}
+
+	traceReplicate(r, es...)
+
+	// use latest "last" index after truncate/append
+	li = r.raftLog.append(es...)
+	// The leader needs to self-ack the entries just appended once they have
+	// been durably persisted (since it doesn't send an MsgApp to itself). This
+	// response message will be added to msgsAfterAppend and delivered back to
+	// this node after these entries have been written to stable storage. When
+	// handled, this is roughly equivalent to:
+	//
+	//  r.trk.Progress[r.id].MaybeUpdate(e.Index)
+	//  if r.maybeCommit() {
+	//  	r.bcastAppend()
+	//  }
+	r.send(pb.Message{To: r.id, Type: pb.MsgAppResp, Index: li})
+	return true
+}
+
+// tickElection is run by followers and candidates after r.electionTimeout.
+func (r *raft) tickElection() {
+	r.electionElapsed++
+
+	if r.promotable() && r.pastElectionTimeout() {
+		r.electionElapsed = 0
+		if err := r.Step(pb.Message{From: r.id, Type: pb.MsgHup}); err != nil {
+			r.logger.Debugf("error occurred during election: %v", err)
+		}
+	}
+}
+
+// tickHeartbeat is run by leaders to send a MsgBeat after r.heartbeatTimeout.
+func (r *raft) tickHeartbeat() {
+	r.heartbeatElapsed++
+	r.electionElapsed++
+
+	if r.electionElapsed >= r.electionTimeout {
+		r.electionElapsed = 0
+		if r.checkQuorum {
+			if err := r.Step(pb.Message{From: r.id, Type: pb.MsgCheckQuorum}); err != nil {
+				r.logger.Debugf("error occurred during checking sending heartbeat: %v", err)
+			}
+		}
+		// If current leader cannot transfer leadership in electionTimeout, it becomes leader again.
+		if r.state == StateLeader && r.leadTransferee != None {
+			r.abortLeaderTransfer()
+		}
+	}
+
+	if r.state != StateLeader {
+		return
+	}
+
+	if r.heartbeatElapsed >= r.heartbeatTimeout {
+		r.heartbeatElapsed = 0
+		if err := r.Step(pb.Message{From: r.id, Type: pb.MsgBeat}); err != nil {
+			r.logger.Debugf("error occurred during checking sending heartbeat: %v", err)
+		}
+	}
+}
+
+func (r *raft) becomeFollower(term uint64, lead uint64) {
+	r.step = stepFollower
+	r.reset(term)
+	r.tick = r.tickElection
+	r.lead = lead
+	r.state = StateFollower
+	r.logger.Infof("%x became follower at term %d", r.id, r.Term)
+
+	traceBecomeFollower(r)
+}
+
+func (r *raft) becomeCandidate() {
+	// TODO(xiangli) remove the panic when the raft implementation is stable
+	if r.state == StateLeader {
+		panic("invalid transition [leader -> candidate]")
+	}
+	r.step = stepCandidate
+	r.reset(r.Term + 1)
+	r.tick = r.tickElection
+	r.Vote = r.id
+	r.state = StateCandidate
+	r.logger.Infof("%x became candidate at term %d", r.id, r.Term)
+
+	traceBecomeCandidate(r)
+}
+
+func (r *raft) becomePreCandidate() {
+	// TODO(xiangli) remove the panic when the raft implementation is stable
+	if r.state == StateLeader {
+		panic("invalid transition [leader -> pre-candidate]")
+	}
+	// Becoming a pre-candidate changes our step functions and state,
+	// but doesn't change anything else. In particular it does not increase
+	// r.Term or change r.Vote.
+	r.step = stepCandidate
+	r.trk.ResetVotes()
+	r.tick = r.tickElection
+	r.lead = None
+	r.state = StatePreCandidate
+	r.logger.Infof("%x became pre-candidate at term %d", r.id, r.Term)
+}
+
+func (r *raft) becomeLeader() {
+	// TODO(xiangli) remove the panic when the raft implementation is stable
+	if r.state == StateFollower {
+		panic("invalid transition [follower -> leader]")
+	}
+	r.step = stepLeader
+	r.reset(r.Term)
+	r.tick = r.tickHeartbeat
+	r.lead = r.id
+	r.state = StateLeader
+	// Followers enter replicate mode when they've been successfully probed
+	// (perhaps after having received a snapshot as a result). The leader is
+	// trivially in this state. Note that r.reset() has initialized this
+	// progress with the last index already.
+	pr := r.trk.Progress[r.id]
+	pr.BecomeReplicate()
+	// The leader always has RecentActive == true; MsgCheckQuorum makes sure to
+	// preserve this.
+	pr.RecentActive = true
+
+	// Conservatively set the pendingConfIndex to the last index in the
+	// log. There may or may not be a pending config change, but it's
+	// safe to delay any future proposals until we commit all our
+	// pending log entries, and scanning the entire tail of the log
+	// could be expensive.
+	r.pendingConfIndex = r.raftLog.lastIndex()
+
+	traceBecomeLeader(r)
+	emptyEnt := pb.Entry{Data: nil}
+	if !r.appendEntry(emptyEnt) {
+		// This won't happen because we just called reset() above.
+		r.logger.Panic("empty entry was dropped")
+	}
+	// The payloadSize of an empty entry is 0 (see TestPayloadSizeOfEmptyEntry),
+	// so the preceding log append does not count against the uncommitted log
+	// quota of the new leader. In other words, after the call to appendEntry,
+	// r.uncommittedSize is still 0.
+	r.logger.Infof("%x became leader at term %d", r.id, r.Term)
+}
+
+func (r *raft) hup(t CampaignType) {
+	if r.state == StateLeader {
+		r.logger.Debugf("%x ignoring MsgHup because already leader", r.id)
+		return
+	}
+
+	if !r.promotable() {
+		r.logger.Warningf("%x is unpromotable and can not campaign", r.id)
+		return
+	}
+	if r.hasUnappliedConfChanges() {
+		r.logger.Warningf("%x cannot campaign at term %d since there are still pending configuration changes to apply", r.id, r.Term)
+		return
+	}
+
+	r.logger.Infof("%x is starting a new election at term %d", r.id, r.Term)
+	r.campaign(t)
+}
+
+// errBreak is a sentinel error used to break a callback-based loop.
+var errBreak = errors.New("break")
+
+func (r *raft) hasUnappliedConfChanges() bool {
+	if r.raftLog.applied >= r.raftLog.committed { // in fact applied == committed
+		return false
+	}
+	found := false
+	// Scan all unapplied committed entries to find a config change. Paginate the
+	// scan, to avoid a potentially unlimited memory spike.
+	lo, hi := r.raftLog.applied+1, r.raftLog.committed+1
+	// Reuse the maxApplyingEntsSize limit because it is used for similar purposes
+	// (limiting the read of unapplied committed entries) when raft sends entries
+	// via the Ready struct for application.
+	// TODO(pavelkalinnikov): find a way to budget memory/bandwidth for this scan
+	// outside the raft package.
+	pageSize := r.raftLog.maxApplyingEntsSize
+	if err := r.raftLog.scan(lo, hi, pageSize, func(ents []pb.Entry) error {
+		for i := range ents {
+			if ents[i].Type == pb.EntryConfChange || ents[i].Type == pb.EntryConfChangeV2 {
+				found = true
+				return errBreak
+			}
+		}
+		return nil
+	}); err != nil && err != errBreak {
+		r.logger.Panicf("error scanning unapplied entries [%d, %d): %v", lo, hi, err)
+	}
+	return found
+}
+
+// campaign transitions the raft instance to candidate state. This must only be
+// called after verifying that this is a legitimate transition.
+func (r *raft) campaign(t CampaignType) {
+	if !r.promotable() {
+		// This path should not be hit (callers are supposed to check), but
+		// better safe than sorry.
+		r.logger.Warningf("%x is unpromotable; campaign() should have been called", r.id)
+	}
+	var term uint64
+	var voteMsg pb.MessageType
+	if t == campaignPreElection {
+		r.becomePreCandidate()
+		voteMsg = pb.MsgPreVote
+		// PreVote RPCs are sent for the next term before we've incremented r.Term.
+		term = r.Term + 1
+	} else {
+		r.becomeCandidate()
+		voteMsg = pb.MsgVote
+		term = r.Term
+	}
+	var ids []uint64
+	{
+		idMap := r.trk.Voters.IDs()
+		ids = make([]uint64, 0, len(idMap))
+		for id := range idMap {
+			ids = append(ids, id)
+		}
+		slices.Sort(ids)
+	}
+	for _, id := range ids {
+		if id == r.id {
+			// The candidate votes for itself and should account for this self
+			// vote once the vote has been durably persisted (since it doesn't
+			// send a MsgVote to itself). This response message will be added to
+			// msgsAfterAppend and delivered back to this node after the vote
+			// has been written to stable storage.
+			r.send(pb.Message{To: id, Term: term, Type: voteRespMsgType(voteMsg)})
+			continue
+		}
+		// TODO(pav-kv): it should be ok to simply print %+v for the lastEntryID.
+		last := r.raftLog.lastEntryID()
+		r.logger.Infof("%x [logterm: %d, index: %d] sent %s request to %x at term %d",
+			r.id, last.term, last.index, voteMsg, id, r.Term)
+
+		var ctx []byte
+		if t == campaignTransfer {
+			ctx = []byte(t)
+		}
+		r.send(pb.Message{To: id, Term: term, Type: voteMsg, Index: last.index, LogTerm: last.term, Context: ctx})
+	}
+}
+
+func (r *raft) poll(id uint64, t pb.MessageType, v bool) (granted int, rejected int, result quorum.VoteResult) {
+	if v {
+		r.logger.Infof("%x received %s from %x at term %d", r.id, t, id, r.Term)
+	} else {
+		r.logger.Infof("%x received %s rejection from %x at term %d", r.id, t, id, r.Term)
+	}
+	r.trk.RecordVote(id, v)
+	return r.trk.TallyVotes()
+}
+
+func (r *raft) Step(m pb.Message) error {
+	traceReceiveMessage(r, &m)
+
+	// Handle the message term, which may result in our stepping down to a follower.
+	switch {
+	case m.Term == 0:
+		// local message
+	case m.Term > r.Term:
+		if m.Type == pb.MsgVote || m.Type == pb.MsgPreVote {
+			force := bytes.Equal(m.Context, []byte(campaignTransfer))
+			inLease := r.checkQuorum && r.lead != None && r.electionElapsed < r.electionTimeout
+			if !force && inLease {
+				// If a server receives a RequestVote request within the minimum election timeout
+				// of hearing from a current leader, it does not update its term or grant its vote
+				last := r.raftLog.lastEntryID()
+				// TODO(pav-kv): it should be ok to simply print the %+v of the lastEntryID.
+				r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] ignored %s from %x [logterm: %d, index: %d] at term %d: lease is not expired (remaining ticks: %d)",
+					r.id, last.term, last.index, r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term, r.electionTimeout-r.electionElapsed)
+				return nil
+			}
+		}
+		switch {
+		case m.Type == pb.MsgPreVote:
+			// Never change our term in response to a PreVote
+		case m.Type == pb.MsgPreVoteResp && !m.Reject:
+			// We send pre-vote requests with a term in our future. If the
+			// pre-vote is granted, we will increment our term when we get a
+			// quorum. If it is not, the term comes from the node that
+			// rejected our vote so we should become a follower at the new
+			// term.
+		default:
+			r.logger.Infof("%x [term: %d] received a %s message with higher term from %x [term: %d]",
+				r.id, r.Term, m.Type, m.From, m.Term)
+			if m.Type == pb.MsgApp || m.Type == pb.MsgHeartbeat || m.Type == pb.MsgSnap {
+				r.becomeFollower(m.Term, m.From)
+			} else {
+				r.becomeFollower(m.Term, None)
+			}
+		}
+
+	case m.Term < r.Term:
+		if (r.checkQuorum || r.preVote) && (m.Type == pb.MsgHeartbeat || m.Type == pb.MsgApp) {
+			// We have received messages from a leader at a lower term. It is possible
+			// that these messages were simply delayed in the network, but this could
+			// also mean that this node has advanced its term number during a network
+			// partition, and it is now unable to either win an election or to rejoin
+			// the majority on the old term. If checkQuorum is false, this will be
+			// handled by incrementing term numbers in response to MsgVote with a
+			// higher term, but if checkQuorum is true we may not advance the term on
+			// MsgVote and must generate other messages to advance the term. The net
+			// result of these two features is to minimize the disruption caused by
+			// nodes that have been removed from the cluster's configuration: a
+			// removed node will send MsgVotes (or MsgPreVotes) which will be ignored,
+			// but it will not receive MsgApp or MsgHeartbeat, so it will not create
+			// disruptive term increases, by notifying leader of this node's activeness.
+			// The above comments also true for Pre-Vote
+			//
+			// When follower gets isolated, it soon starts an election ending
+			// up with a higher term than leader, although it won't receive enough
+			// votes to win the election. When it regains connectivity, this response
+			// with "pb.MsgAppResp" of higher term would force leader to step down.
+			// However, this disruption is inevitable to free this stuck node with
+			// fresh election. This can be prevented with Pre-Vote phase.
+			r.send(pb.Message{To: m.From, Type: pb.MsgAppResp})
+		} else if m.Type == pb.MsgPreVote {
+			// Before Pre-Vote enable, there may have candidate with higher term,
+			// but less log. After update to Pre-Vote, the cluster may deadlock if
+			// we drop messages with a lower term.
+			last := r.raftLog.lastEntryID()
+			// TODO(pav-kv): it should be ok to simply print %+v of the lastEntryID.
+			r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] rejected %s from %x [logterm: %d, index: %d] at term %d",
+				r.id, last.term, last.index, r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term)
+			r.send(pb.Message{To: m.From, Term: r.Term, Type: pb.MsgPreVoteResp, Reject: true})
+		} else if m.Type == pb.MsgStorageAppendResp {
+			if m.Index != 0 {
+				// Don't consider the appended log entries to be stable because
+				// they may have been overwritten in the unstable log during a
+				// later term. See the comment in newStorageAppendResp for more
+				// about this race.
+				r.logger.Infof("%x [term: %d] ignored entry appends from a %s message with lower term [term: %d]",
+					r.id, r.Term, m.Type, m.Term)
+			}
+			if m.Snapshot != nil {
+				// Even if the snapshot applied under a different term, its
+				// application is still valid. Snapshots carry committed
+				// (term-independent) state.
+				r.appliedSnap(m.Snapshot)
+			}
+		} else {
+			// ignore other cases
+			r.logger.Infof("%x [term: %d] ignored a %s message with lower term from %x [term: %d]",
+				r.id, r.Term, m.Type, m.From, m.Term)
+		}
+		return nil
+	}
+
+	switch m.Type {
+	case pb.MsgHup:
+		if r.preVote {
+			r.hup(campaignPreElection)
+		} else {
+			r.hup(campaignElection)
+		}
+
+	case pb.MsgStorageAppendResp:
+		if m.Index != 0 {
+			r.raftLog.stableTo(entryID{term: m.LogTerm, index: m.Index})
+		}
+		if m.Snapshot != nil {
+			r.appliedSnap(m.Snapshot)
+		}
+
+	case pb.MsgStorageApplyResp:
+		if len(m.Entries) > 0 {
+			index := m.Entries[len(m.Entries)-1].Index
+			r.appliedTo(index, entsSize(m.Entries))
+			r.reduceUncommittedSize(payloadsSize(m.Entries))
+		}
+
+	case pb.MsgVote, pb.MsgPreVote:
+		// We can vote if this is a repeat of a vote we've already cast...
+		canVote := r.Vote == m.From ||
+			// ...we haven't voted and we don't think there's a leader yet in this term...
+			(r.Vote == None && r.lead == None) ||
+			// ...or this is a PreVote for a future term...
+			(m.Type == pb.MsgPreVote && m.Term > r.Term)
+		// ...and we believe the candidate is up to date.
+		lastID := r.raftLog.lastEntryID()
+		candLastID := entryID{term: m.LogTerm, index: m.Index}
+		if canVote && r.raftLog.isUpToDate(candLastID) {
+			// Note: it turns out that that learners must be allowed to cast votes.
+			// This seems counter- intuitive but is necessary in the situation in which
+			// a learner has been promoted (i.e. is now a voter) but has not learned
+			// about this yet.
+			// For example, consider a group in which id=1 is a learner and id=2 and
+			// id=3 are voters. A configuration change promoting 1 can be committed on
+			// the quorum `{2,3}` without the config change being appended to the
+			// learner's log. If the leader (say 2) fails, there are de facto two
+			// voters remaining. Only 3 can win an election (due to its log containing
+			// all committed entries), but to do so it will need 1 to vote. But 1
+			// considers itself a learner and will continue to do so until 3 has
+			// stepped up as leader, replicates the conf change to 1, and 1 applies it.
+			// Ultimately, by receiving a request to vote, the learner realizes that
+			// the candidate believes it to be a voter, and that it should act
+			// accordingly. The candidate's config may be stale, too; but in that case
+			// it won't win the election, at least in the absence of the bug discussed
+			// in:
+			// https://github.com/etcd-io/etcd/issues/7625#issuecomment-488798263.
+			r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] cast %s for %x [logterm: %d, index: %d] at term %d",
+				r.id, lastID.term, lastID.index, r.Vote, m.Type, m.From, candLastID.term, candLastID.index, r.Term)
+			// When responding to Msg{Pre,}Vote messages we include the term
+			// from the message, not the local term. To see why, consider the
+			// case where a single node was previously partitioned away and
+			// it's local term is now out of date. If we include the local term
+			// (recall that for pre-votes we don't update the local term), the
+			// (pre-)campaigning node on the other end will proceed to ignore
+			// the message (it ignores all out of date messages).
+			// The term in the original message and current local term are the
+			// same in the case of regular votes, but different for pre-votes.
+			r.send(pb.Message{To: m.From, Term: m.Term, Type: voteRespMsgType(m.Type)})
+			if m.Type == pb.MsgVote {
+				// Only record real votes.
+				r.electionElapsed = 0
+				r.Vote = m.From
+			}
+		} else {
+			r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] rejected %s from %x [logterm: %d, index: %d] at term %d",
+				r.id, lastID.term, lastID.index, r.Vote, m.Type, m.From, candLastID.term, candLastID.index, r.Term)
+			r.send(pb.Message{To: m.From, Term: r.Term, Type: voteRespMsgType(m.Type), Reject: true})
+		}
+
+	default:
+		err := r.step(r, m)
+		if err != nil {
+			return err
+		}
+	}
+	return nil
+}
+
+type stepFunc func(r *raft, m pb.Message) error
+
+func stepLeader(r *raft, m pb.Message) error {
+	// These message types do not require any progress for m.From.
+	switch m.Type {
+	case pb.MsgBeat:
+		r.bcastHeartbeat()
+		return nil
+	case pb.MsgCheckQuorum:
+		if !r.trk.QuorumActive() {
+			r.logger.Warningf("%x stepped down to follower since quorum is not active", r.id)
+			r.becomeFollower(r.Term, None)
+		}
+		// Mark everyone (but ourselves) as inactive in preparation for the next
+		// CheckQuorum.
+		r.trk.Visit(func(id uint64, pr *tracker.Progress) {
+			if id != r.id {
+				pr.RecentActive = false
+			}
+		})
+		return nil
+	case pb.MsgProp:
+		if len(m.Entries) == 0 {
+			r.logger.Panicf("%x stepped empty MsgProp", r.id)
+		}
+		if r.trk.Progress[r.id] == nil {
+			// If we are not currently a member of the range (i.e. this node
+			// was removed from the configuration while serving as leader),
+			// drop any new proposals.
+			return ErrProposalDropped
+		}
+		if r.leadTransferee != None {
+			r.logger.Debugf("%x [term %d] transfer leadership to %x is in progress; dropping proposal", r.id, r.Term, r.leadTransferee)
+			return ErrProposalDropped
+		}
+
+		for i := range m.Entries {
+			e := &m.Entries[i]
+			var cc pb.ConfChangeI
+			if e.Type == pb.EntryConfChange {
+				var ccc pb.ConfChange
+				if err := ccc.Unmarshal(e.Data); err != nil {
+					panic(err)
+				}
+				cc = ccc
+			} else if e.Type == pb.EntryConfChangeV2 {
+				var ccc pb.ConfChangeV2
+				if err := ccc.Unmarshal(e.Data); err != nil {
+					panic(err)
+				}
+				cc = ccc
+			}
+			if cc != nil {
+				alreadyPending := r.pendingConfIndex > r.raftLog.applied
+				alreadyJoint := len(r.trk.Config.Voters[1]) > 0
+				wantsLeaveJoint := len(cc.AsV2().Changes) == 0
+
+				var failedCheck string
+				if alreadyPending {
+					failedCheck = fmt.Sprintf("possible unapplied conf change at index %d (applied to %d)", r.pendingConfIndex, r.raftLog.applied)
+				} else if alreadyJoint && !wantsLeaveJoint {
+					failedCheck = "must transition out of joint config first"
+				} else if !alreadyJoint && wantsLeaveJoint {
+					failedCheck = "not in joint state; refusing empty conf change"
+				}
+
+				if failedCheck != "" && !r.disableConfChangeValidation {
+					r.logger.Infof("%x ignoring conf change %v at config %s: %s", r.id, cc, r.trk.Config, failedCheck)
+					m.Entries[i] = pb.Entry{Type: pb.EntryNormal}
+				} else {
+					r.pendingConfIndex = r.raftLog.lastIndex() + uint64(i) + 1
+					traceChangeConfEvent(cc, r)
+				}
+			}
+		}
+
+		if !r.appendEntry(m.Entries...) {
+			return ErrProposalDropped
+		}
+		r.bcastAppend()
+		return nil
+	case pb.MsgReadIndex:
+		// only one voting member (the leader) in the cluster
+		if r.trk.IsSingleton() {
+			if resp := r.responseToReadIndexReq(m, r.raftLog.committed); resp.To != None {
+				r.send(resp)
+			}
+			return nil
+		}
+
+		// Postpone read only request when this leader has not committed
+		// any log entry at its term.
+		if !r.committedEntryInCurrentTerm() {
+			r.pendingReadIndexMessages = append(r.pendingReadIndexMessages, m)
+			return nil
+		}
+
+		sendMsgReadIndexResponse(r, m)
+
+		return nil
+	case pb.MsgForgetLeader:
+		return nil // noop on leader
+	}
+
+	// All other message types require a progress for m.From (pr).
+	pr := r.trk.Progress[m.From]
+	if pr == nil {
+		r.logger.Debugf("%x no progress available for %x", r.id, m.From)
+		return nil
+	}
+	switch m.Type {
+	case pb.MsgAppResp:
+		// NB: this code path is also hit from (*raft).advance, where the leader steps
+		// an MsgAppResp to acknowledge the appended entries in the last Ready.
+
+		pr.RecentActive = true
+
+		if m.Reject {
+			// RejectHint is the suggested next base entry for appending (i.e.
+			// we try to append entry RejectHint+1 next), and LogTerm is the
+			// term that the follower has at index RejectHint. Older versions
+			// of this library did not populate LogTerm for rejections and it
+			// is zero for followers with an empty log.
+			//
+			// Under normal circumstances, the leader's log is longer than the
+			// follower's and the follower's log is a prefix of the leader's
+			// (i.e. there is no divergent uncommitted suffix of the log on the
+			// follower). In that case, the first probe reveals where the
+			// follower's log ends (RejectHint=follower's last index) and the
+			// subsequent probe succeeds.
+			//
+			// However, when networks are partitioned or systems overloaded,
+			// large divergent log tails can occur. The naive attempt, probing
+			// entry by entry in decreasing order, will be the product of the
+			// length of the diverging tails and the network round-trip latency,
+			// which can easily result in hours of time spent probing and can
+			// even cause outright outages. The probes are thus optimized as
+			// described below.
+			r.logger.Debugf("%x received MsgAppResp(rejected, hint: (index %d, term %d)) from %x for index %d",
+				r.id, m.RejectHint, m.LogTerm, m.From, m.Index)
+			nextProbeIdx := m.RejectHint
+			if m.LogTerm > 0 {
+				// If the follower has an uncommitted log tail, we would end up
+				// probing one by one until we hit the common prefix.
+				//
+				// For example, if the leader has:
+				//
+				//   idx        1 2 3 4 5 6 7 8 9
+				//              -----------------
+				//   term (L)   1 3 3 3 5 5 5 5 5
+				//   term (F)   1 1 1 1 2 2
+				//
+				// Then, after sending an append anchored at (idx=9,term=5) we
+				// would receive a RejectHint of 6 and LogTerm of 2. Without the
+				// code below, we would try an append at index 6, which would
+				// fail again.
+				//
+				// However, looking only at what the leader knows about its own
+				// log and the rejection hint, it is clear that a probe at index
+				// 6, 5, 4, 3, and 2 must fail as well:
+				//
+				// For all of these indexes, the leader's log term is larger than
+				// the rejection's log term. If a probe at one of these indexes
+				// succeeded, its log term at that index would match the leader's,
+				// i.e. 3 or 5 in this example. But the follower already told the
+				// leader that it is still at term 2 at index 6, and since the
+				// log term only ever goes up (within a log), this is a contradiction.
+				//
+				// At index 1, however, the leader can draw no such conclusion,
+				// as its term 1 is not larger than the term 2 from the
+				// follower's rejection. We thus probe at 1, which will succeed
+				// in this example. In general, with this approach we probe at
+				// most once per term found in the leader's log.
+				//
+				// There is a similar mechanism on the follower (implemented in
+				// handleAppendEntries via a call to findConflictByTerm) that is
+				// useful if the follower has a large divergent uncommitted log
+				// tail[1], as in this example:
+				//
+				//   idx        1 2 3 4 5 6 7 8 9
+				//              -----------------
+				//   term (L)   1 3 3 3 3 3 3 3 7
+				//   term (F)   1 3 3 4 4 5 5 5 6
+				//
+				// Naively, the leader would probe at idx=9, receive a rejection
+				// revealing the log term of 6 at the follower. Since the leader's
+				// term at the previous index is already smaller than 6, the leader-
+				// side optimization discussed above is ineffective. The leader thus
+				// probes at index 8 and, naively, receives a rejection for the same
+				// index and log term 5. Again, the leader optimization does not improve
+				// over linear probing as term 5 is above the leader's term 3 for that
+				// and many preceding indexes; the leader would have to probe linearly
+				// until it would finally hit index 3, where the probe would succeed.
+				//
+				// Instead, we apply a similar optimization on the follower. When the
+				// follower receives the probe at index 8 (log term 3), it concludes
+				// that all of the leader's log preceding that index has log terms of
+				// 3 or below. The largest index in the follower's log with a log term
+				// of 3 or below is index 3. The follower will thus return a rejection
+				// for index=3, log term=3 instead. The leader's next probe will then
+				// succeed at that index.
+				//
+				// [1]: more precisely, if the log terms in the large uncommitted
+				// tail on the follower are larger than the leader's. At first,
+				// it may seem unintuitive that a follower could even have such
+				// a large tail, but it can happen:
+				//
+				// 1. Leader appends (but does not commit) entries 2 and 3, crashes.
+				//   idx        1 2 3 4 5 6 7 8 9
+				//              -----------------
+				//   term (L)   1 2 2     [crashes]
+				//   term (F)   1
+				//   term (F)   1
+				//
+				// 2. a follower becomes leader and appends entries at term 3.
+				//              -----------------
+				//   term (x)   1 2 2     [down]
+				//   term (F)   1 3 3 3 3
+				//   term (F)   1
+				//
+				// 3. term 3 leader goes down, term 2 leader returns as term 4
+				//    leader. It commits the log & entries at term 4.
+				//
+				//              -----------------
+				//   term (L)   1 2 2 2
+				//   term (x)   1 3 3 3 3 [down]
+				//   term (F)   1
+				//              -----------------
+				//   term (L)   1 2 2 2 4 4 4
+				//   term (F)   1 3 3 3 3 [gets probed]
+				//   term (F)   1 2 2 2 4 4 4
+				//
+				// 4. the leader will now probe the returning follower at index
+				//    7, the rejection points it at the end of the follower's log
+				//    which is at a higher log term than the actually committed
+				//    log.
+				nextProbeIdx, _ = r.raftLog.findConflictByTerm(m.RejectHint, m.LogTerm)
+			}
+			if pr.MaybeDecrTo(m.Index, nextProbeIdx) {
+				r.logger.Debugf("%x decreased progress of %x to [%s]", r.id, m.From, pr)
+				if pr.State == tracker.StateReplicate {
+					pr.BecomeProbe()
+				}
+				r.sendAppend(m.From)
+			}
+		} else {
+			// We want to update our tracking if the response updates our
+			// matched index or if the response can move a probing peer back
+			// into StateReplicate (see heartbeat_rep_recovers_from_probing.txt
+			// for an example of the latter case).
+			// NB: the same does not make sense for StateSnapshot - if `m.Index`
+			// equals pr.Match we know we don't m.Index+1 in our log, so moving
+			// back to replicating state is not useful; besides pr.PendingSnapshot
+			// would prevent it.
+			if pr.MaybeUpdate(m.Index) || (pr.Match == m.Index && pr.State == tracker.StateProbe) {
+				switch {
+				case pr.State == tracker.StateProbe:
+					pr.BecomeReplicate()
+				case pr.State == tracker.StateSnapshot && pr.Match+1 >= r.raftLog.firstIndex():
+					// Note that we don't take into account PendingSnapshot to
+					// enter this branch. No matter at which index a snapshot
+					// was actually applied, as long as this allows catching up
+					// the follower from the log, we will accept it. This gives
+					// systems more flexibility in how they implement snapshots;
+					// see the comments on PendingSnapshot.
+					r.logger.Debugf("%x recovered from needing snapshot, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
+					// Transition back to replicating state via probing state
+					// (which takes the snapshot into account). If we didn't
+					// move to replicating state, that would only happen with
+					// the next round of appends (but there may not be a next
+					// round for a while, exposing an inconsistent RaftStatus).
+					pr.BecomeProbe()
+					pr.BecomeReplicate()
+				case pr.State == tracker.StateReplicate:
+					pr.Inflights.FreeLE(m.Index)
+				}
+
+				if r.maybeCommit() {
+					// committed index has progressed for the term, so it is safe
+					// to respond to pending read index requests
+					releasePendingReadIndexMessages(r)
+					r.bcastAppend()
+				} else if r.id != m.From && pr.CanBumpCommit(r.raftLog.committed) {
+					// This node may be missing the latest commit index, so send it.
+					// NB: this is not strictly necessary because the periodic heartbeat
+					// messages deliver commit indices too. However, a message sent now
+					// may arrive earlier than the next heartbeat fires.
+					r.sendAppend(m.From)
+				}
+				// We've updated flow control information above, which may
+				// allow us to send multiple (size-limited) in-flight messages
+				// at once (such as when transitioning from probe to
+				// replicate, or when freeTo() covers multiple messages). If
+				// we have more entries to send, send as many messages as we
+				// can (without sending empty messages for the commit index)
+				if r.id != m.From {
+					for r.maybeSendAppend(m.From, false /* sendIfEmpty */) {
+					}
+				}
+				// Transfer leadership is in progress.
+				if m.From == r.leadTransferee && pr.Match == r.raftLog.lastIndex() {
+					r.logger.Infof("%x sent MsgTimeoutNow to %x after received MsgAppResp", r.id, m.From)
+					r.sendTimeoutNow(m.From)
+				}
+			}
+		}
+	case pb.MsgHeartbeatResp:
+		pr.RecentActive = true
+		pr.MsgAppFlowPaused = false
+
+		// NB: if the follower is paused (full Inflights), this will still send an
+		// empty append, allowing it to recover from situations in which all the
+		// messages that filled up Inflights in the first place were dropped. Note
+		// also that the outgoing heartbeat already communicated the commit index.
+		//
+		// If the follower is fully caught up but also in StateProbe (as can happen
+		// if ReportUnreachable was called), we also want to send an append (it will
+		// be empty) to allow the follower to transition back to StateReplicate once
+		// it responds.
+		//
+		// Note that StateSnapshot typically satisfies pr.Match < lastIndex, but
+		// `pr.Paused()` is always true for StateSnapshot, so sendAppend is a
+		// no-op.
+		if pr.Match < r.raftLog.lastIndex() || pr.State == tracker.StateProbe {
+			r.sendAppend(m.From)
+		}
+
+		if r.readOnly.option != ReadOnlySafe || len(m.Context) == 0 {
+			return nil
+		}
+
+		if r.trk.Voters.VoteResult(r.readOnly.recvAck(m.From, m.Context)) != quorum.VoteWon {
+			return nil
+		}
+
+		rss := r.readOnly.advance(m)
+		for _, rs := range rss {
+			if resp := r.responseToReadIndexReq(rs.req, rs.index); resp.To != None {
+				r.send(resp)
+			}
+		}
+	case pb.MsgSnapStatus:
+		if pr.State != tracker.StateSnapshot {
+			return nil
+		}
+		if !m.Reject {
+			pr.BecomeProbe()
+			r.logger.Debugf("%x snapshot succeeded, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
+		} else {
+			// NB: the order here matters or we'll be probing erroneously from
+			// the snapshot index, but the snapshot never applied.
+			pr.PendingSnapshot = 0
+			pr.BecomeProbe()
+			r.logger.Debugf("%x snapshot failed, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
+		}
+		// If snapshot finish, wait for the MsgAppResp from the remote node before sending
+		// out the next MsgApp.
+		// If snapshot failure, wait for a heartbeat interval before next try
+		pr.MsgAppFlowPaused = true
+	case pb.MsgUnreachable:
+		// During optimistic replication, if the remote becomes unreachable,
+		// there is huge probability that a MsgApp is lost.
+		if pr.State == tracker.StateReplicate {
+			pr.BecomeProbe()
+		}
+		r.logger.Debugf("%x failed to send message to %x because it is unreachable [%s]", r.id, m.From, pr)
+	case pb.MsgTransferLeader:
+		if pr.IsLearner {
+			r.logger.Debugf("%x is learner. Ignored transferring leadership", r.id)
+			return nil
+		}
+		leadTransferee := m.From
+		lastLeadTransferee := r.leadTransferee
+		if lastLeadTransferee != None {
+			if lastLeadTransferee == leadTransferee {
+				r.logger.Infof("%x [term %d] transfer leadership to %x is in progress, ignores request to same node %x",
+					r.id, r.Term, leadTransferee, leadTransferee)
+				return nil
+			}
+			r.abortLeaderTransfer()
+			r.logger.Infof("%x [term %d] abort previous transferring leadership to %x", r.id, r.Term, lastLeadTransferee)
+		}
+		if leadTransferee == r.id {
+			r.logger.Debugf("%x is already leader. Ignored transferring leadership to self", r.id)
+			return nil
+		}
+		// Transfer leadership to third party.
+		r.logger.Infof("%x [term %d] starts to transfer leadership to %x", r.id, r.Term, leadTransferee)
+		// Transfer leadership should be finished in one electionTimeout, so reset r.electionElapsed.
+		r.electionElapsed = 0
+		r.leadTransferee = leadTransferee
+		if pr.Match == r.raftLog.lastIndex() {
+			r.sendTimeoutNow(leadTransferee)
+			r.logger.Infof("%x sends MsgTimeoutNow to %x immediately as %x already has up-to-date log", r.id, leadTransferee, leadTransferee)
+		} else {
+			r.sendAppend(leadTransferee)
+		}
+	}
+	return nil
+}
+
+// stepCandidate is shared by StateCandidate and StatePreCandidate; the difference is
+// whether they respond to MsgVoteResp or MsgPreVoteResp.
+func stepCandidate(r *raft, m pb.Message) error {
+	// Only handle vote responses corresponding to our candidacy (while in
+	// StateCandidate, we may get stale MsgPreVoteResp messages in this term from
+	// our pre-candidate state).
+	var myVoteRespType pb.MessageType
+	if r.state == StatePreCandidate {
+		myVoteRespType = pb.MsgPreVoteResp
+	} else {
+		myVoteRespType = pb.MsgVoteResp
+	}
+	switch m.Type {
+	case pb.MsgProp:
+		r.logger.Infof("%x no leader at term %d; dropping proposal", r.id, r.Term)
+		return ErrProposalDropped
+	case pb.MsgApp:
+		r.becomeFollower(m.Term, m.From) // always m.Term == r.Term
+		r.handleAppendEntries(m)
+	case pb.MsgHeartbeat:
+		r.becomeFollower(m.Term, m.From) // always m.Term == r.Term
+		r.handleHeartbeat(m)
+	case pb.MsgSnap:
+		r.becomeFollower(m.Term, m.From) // always m.Term == r.Term
+		r.handleSnapshot(m)
+	case myVoteRespType:
+		gr, rj, res := r.poll(m.From, m.Type, !m.Reject)
+		r.logger.Infof("%x has received %d %s votes and %d vote rejections", r.id, gr, m.Type, rj)
+		switch res {
+		case quorum.VoteWon:
+			if r.state == StatePreCandidate {
+				r.campaign(campaignElection)
+			} else {
+				r.becomeLeader()
+				r.bcastAppend()
+			}
+		case quorum.VoteLost:
+			// pb.MsgPreVoteResp contains future term of pre-candidate
+			// m.Term > r.Term; reuse r.Term
+			r.becomeFollower(r.Term, None)
+		}
+	case pb.MsgTimeoutNow:
+		r.logger.Debugf("%x [term %d state %v] ignored MsgTimeoutNow from %x", r.id, r.Term, r.state, m.From)
+	}
+	return nil
+}
+
+func stepFollower(r *raft, m pb.Message) error {
+	switch m.Type {
+	case pb.MsgProp:
+		if r.lead == None {
+			r.logger.Infof("%x no leader at term %d; dropping proposal", r.id, r.Term)
+			return ErrProposalDropped
+		} else if r.disableProposalForwarding {
+			r.logger.Infof("%x not forwarding to leader %x at term %d; dropping proposal", r.id, r.lead, r.Term)
+			return ErrProposalDropped
+		}
+		m.To = r.lead
+		r.send(m)
+	case pb.MsgApp:
+		r.electionElapsed = 0
+		r.lead = m.From
+		r.handleAppendEntries(m)
+	case pb.MsgHeartbeat:
+		r.electionElapsed = 0
+		r.lead = m.From
+		r.handleHeartbeat(m)
+	case pb.MsgSnap:
+		r.electionElapsed = 0
+		r.lead = m.From
+		r.handleSnapshot(m)
+	case pb.MsgTransferLeader:
+		if r.lead == None {
+			r.logger.Infof("%x no leader at term %d; dropping leader transfer msg", r.id, r.Term)
+			return nil
+		}
+		m.To = r.lead
+		r.send(m)
+	case pb.MsgForgetLeader:
+		if r.readOnly.option == ReadOnlyLeaseBased {
+			r.logger.Error("ignoring MsgForgetLeader due to ReadOnlyLeaseBased")
+			return nil
+		}
+		if r.lead != None {
+			r.logger.Infof("%x forgetting leader %x at term %d", r.id, r.lead, r.Term)
+			r.lead = None
+		}
+	case pb.MsgTimeoutNow:
+		r.logger.Infof("%x [term %d] received MsgTimeoutNow from %x and starts an election to get leadership.", r.id, r.Term, m.From)
+		// Leadership transfers never use pre-vote even if r.preVote is true; we
+		// know we are not recovering from a partition so there is no need for the
+		// extra round trip.
+		r.hup(campaignTransfer)
+	case pb.MsgReadIndex:
+		if r.lead == None {
+			r.logger.Infof("%x no leader at term %d; dropping index reading msg", r.id, r.Term)
+			return nil
+		}
+		m.To = r.lead
+		r.send(m)
+	case pb.MsgReadIndexResp:
+		if len(m.Entries) != 1 {
+			r.logger.Errorf("%x invalid format of MsgReadIndexResp from %x, entries count: %d", r.id, m.From, len(m.Entries))
+			return nil
+		}
+		r.readStates = append(r.readStates, ReadState{Index: m.Index, RequestCtx: m.Entries[0].Data})
+	}
+	return nil
+}
+
+// logSliceFromMsgApp extracts the appended logSlice from a MsgApp message.
+func logSliceFromMsgApp(m *pb.Message) logSlice {
+	// TODO(pav-kv): consider also validating the logSlice here.
+	return logSlice{
+		term:    m.Term,
+		prev:    entryID{term: m.LogTerm, index: m.Index},
+		entries: m.Entries,
+	}
+}
+
+func (r *raft) handleAppendEntries(m pb.Message) {
+	// TODO(pav-kv): construct logSlice up the stack next to receiving the
+	// message, and validate it before taking any action (e.g. bumping term).
+	a := logSliceFromMsgApp(&m)
+
+	if a.prev.index < r.raftLog.committed {
+		r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})
+		return
+	}
+	if mlastIndex, ok := r.raftLog.maybeAppend(a, m.Commit); ok {
+		r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: mlastIndex})
+		return
+	}
+	r.logger.Debugf("%x [logterm: %d, index: %d] rejected MsgApp [logterm: %d, index: %d] from %x",
+		r.id, r.raftLog.zeroTermOnOutOfBounds(r.raftLog.term(m.Index)), m.Index, m.LogTerm, m.Index, m.From)
+
+	// Our log does not match the leader's at index m.Index. Return a hint to the
+	// leader - a guess on the maximal (index, term) at which the logs match. Do
+	// this by searching through the follower's log for the maximum (index, term)
+	// pair with a term <= the MsgApp's LogTerm and an index <= the MsgApp's
+	// Index. This can help skip all indexes in the follower's uncommitted tail
+	// with terms greater than the MsgApp's LogTerm.
+	//
+	// See the other caller for findConflictByTerm (in stepLeader) for a much more
+	// detailed explanation of this mechanism.
+
+	// NB: m.Index >= raftLog.committed by now (see the early return above), and
+	// raftLog.lastIndex() >= raftLog.committed by invariant, so min of the two is
+	// also >= raftLog.committed. Hence, the findConflictByTerm argument is within
+	// the valid interval, which then will return a valid (index, term) pair with
+	// a non-zero term (unless the log is empty). However, it is safe to send a zero
+	// LogTerm in this response in any case, so we don't verify it here.
+	hintIndex := min(m.Index, r.raftLog.lastIndex())
+	hintIndex, hintTerm := r.raftLog.findConflictByTerm(hintIndex, m.LogTerm)
+	r.send(pb.Message{
+		To:         m.From,
+		Type:       pb.MsgAppResp,
+		Index:      m.Index,
+		Reject:     true,
+		RejectHint: hintIndex,
+		LogTerm:    hintTerm,
+	})
+}
+
+func (r *raft) handleHeartbeat(m pb.Message) {
+	r.raftLog.commitTo(m.Commit)
+	r.send(pb.Message{To: m.From, Type: pb.MsgHeartbeatResp, Context: m.Context})
+}
+
+func (r *raft) handleSnapshot(m pb.Message) {
+	// MsgSnap messages should always carry a non-nil Snapshot, but err on the
+	// side of safety and treat a nil Snapshot as a zero-valued Snapshot.
+	var s pb.Snapshot
+	if m.Snapshot != nil {
+		s = *m.Snapshot
+	}
+	sindex, sterm := s.Metadata.Index, s.Metadata.Term
+	if r.restore(s) {
+		r.logger.Infof("%x [commit: %d] restored snapshot [index: %d, term: %d]",
+			r.id, r.raftLog.committed, sindex, sterm)
+		r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.lastIndex()})
+	} else {
+		r.logger.Infof("%x [commit: %d] ignored snapshot [index: %d, term: %d]",
+			r.id, r.raftLog.committed, sindex, sterm)
+		r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})
+	}
+}
+
+// restore recovers the state machine from a snapshot. It restores the log and the
+// configuration of state machine. If this method returns false, the snapshot was
+// ignored, either because it was obsolete or because of an error.
+func (r *raft) restore(s pb.Snapshot) bool {
+	if s.Metadata.Index <= r.raftLog.committed {
+		return false
+	}
+	if r.state != StateFollower {
+		// This is defense-in-depth: if the leader somehow ended up applying a
+		// snapshot, it could move into a new term without moving into a
+		// follower state. This should never fire, but if it did, we'd have
+		// prevented damage by returning early, so log only a loud warning.
+		//
+		// At the time of writing, the instance is guaranteed to be in follower
+		// state when this method is called.
+		r.logger.Warningf("%x attempted to restore snapshot as leader; should never happen", r.id)
+		r.becomeFollower(r.Term+1, None)
+		return false
+	}
+
+	// More defense-in-depth: throw away snapshot if recipient is not in the
+	// config. This shouldn't ever happen (at the time of writing) but lots of
+	// code here and there assumes that r.id is in the progress tracker.
+	found := false
+	cs := s.Metadata.ConfState
+
+	for _, set := range [][]uint64{
+		cs.Voters,
+		cs.Learners,
+		cs.VotersOutgoing,
+		// `LearnersNext` doesn't need to be checked. According to the rules, if a peer in
+		// `LearnersNext`, it has to be in `VotersOutgoing`.
+	} {
+		for _, id := range set {
+			if id == r.id {
+				found = true
+				break
+			}
+		}
+		if found {
+			break
+		}
+	}
+	if !found {
+		r.logger.Warningf(
+			"%x attempted to restore snapshot but it is not in the ConfState %v; should never happen",
+			r.id, cs,
+		)
+		return false
+	}
+
+	// Now go ahead and actually restore.
+
+	id := entryID{term: s.Metadata.Term, index: s.Metadata.Index}
+	if r.raftLog.matchTerm(id) {
+		// TODO(pav-kv): can print %+v of the id, but it will change the format.
+		last := r.raftLog.lastEntryID()
+		r.logger.Infof("%x [commit: %d, lastindex: %d, lastterm: %d] fast-forwarded commit to snapshot [index: %d, term: %d]",
+			r.id, r.raftLog.committed, last.index, last.term, id.index, id.term)
+		r.raftLog.commitTo(s.Metadata.Index)
+		return false
+	}
+
+	r.raftLog.restore(s)
+
+	// Reset the configuration and add the (potentially updated) peers in anew.
+	r.trk = tracker.MakeProgressTracker(r.trk.MaxInflight, r.trk.MaxInflightBytes)
+	cfg, trk, err := confchange.Restore(confchange.Changer{
+		Tracker:   r.trk,
+		LastIndex: r.raftLog.lastIndex(),
+	}, cs)
+
+	if err != nil {
+		// This should never happen. Either there's a bug in our config change
+		// handling or the client corrupted the conf change.
+		panic(fmt.Sprintf("unable to restore config %+v: %s", cs, err))
+	}
+
+	assertConfStatesEquivalent(r.logger, cs, r.switchToConfig(cfg, trk))
+
+	last := r.raftLog.lastEntryID()
+	r.logger.Infof("%x [commit: %d, lastindex: %d, lastterm: %d] restored snapshot [index: %d, term: %d]",
+		r.id, r.raftLog.committed, last.index, last.term, id.index, id.term)
+	return true
+}
+
+// promotable indicates whether state machine can be promoted to leader,
+// which is true when its own id is in progress list.
+func (r *raft) promotable() bool {
+	pr := r.trk.Progress[r.id]
+	return pr != nil && !pr.IsLearner && !r.raftLog.hasNextOrInProgressSnapshot()
+}
+
+func (r *raft) applyConfChange(cc pb.ConfChangeV2) pb.ConfState {
+	cfg, trk, err := func() (tracker.Config, tracker.ProgressMap, error) {
+		changer := confchange.Changer{
+			Tracker:   r.trk,
+			LastIndex: r.raftLog.lastIndex(),
+		}
+		if cc.LeaveJoint() {
+			return changer.LeaveJoint()
+		} else if autoLeave, ok := cc.EnterJoint(); ok {
+			return changer.EnterJoint(autoLeave, cc.Changes...)
+		}
+		return changer.Simple(cc.Changes...)
+	}()
+
+	if err != nil {
+		// TODO(tbg): return the error to the caller.
+		panic(err)
+	}
+
+	return r.switchToConfig(cfg, trk)
+}
+
+// switchToConfig reconfigures this node to use the provided configuration. It
+// updates the in-memory state and, when necessary, carries out additional
+// actions such as reacting to the removal of nodes or changed quorum
+// requirements.
+//
+// The inputs usually result from restoring a ConfState or applying a ConfChange.
+func (r *raft) switchToConfig(cfg tracker.Config, trk tracker.ProgressMap) pb.ConfState {
+	traceConfChangeEvent(cfg, r)
+
+	r.trk.Config = cfg
+	r.trk.Progress = trk
+
+	r.logger.Infof("%x switched to configuration %s", r.id, r.trk.Config)
+	cs := r.trk.ConfState()
+	pr, ok := r.trk.Progress[r.id]
+
+	// Update whether the node itself is a learner, resetting to false when the
+	// node is removed.
+	r.isLearner = ok && pr.IsLearner
+
+	if (!ok || r.isLearner) && r.state == StateLeader {
+		// This node is leader and was removed or demoted, step down if requested.
+		//
+		// We prevent demotions at the time writing but hypothetically we handle
+		// them the same way as removing the leader.
+		//
+		// TODO(tbg): ask follower with largest Match to TimeoutNow (to avoid
+		// interruption). This might still drop some proposals but it's better than
+		// nothing.
+		if r.stepDownOnRemoval {
+			r.becomeFollower(r.Term, None)
+		}
+		return cs
+	}
+
+	// The remaining steps only make sense if this node is the leader and there
+	// are other nodes.
+	if r.state != StateLeader || len(cs.Voters) == 0 {
+		return cs
+	}
+
+	if r.maybeCommit() {
+		// If the configuration change means that more entries are committed now,
+		// broadcast/append to everyone in the updated config.
+		r.bcastAppend()
+	} else {
+		// Otherwise, still probe the newly added replicas; there's no reason to
+		// let them wait out a heartbeat interval (or the next incoming
+		// proposal).
+		r.trk.Visit(func(id uint64, _ *tracker.Progress) {
+			if id == r.id {
+				return
+			}
+			r.maybeSendAppend(id, false /* sendIfEmpty */)
+		})
+	}
+	// If the leadTransferee was removed or demoted, abort the leadership transfer.
+	if _, tOK := r.trk.Config.Voters.IDs()[r.leadTransferee]; !tOK && r.leadTransferee != 0 {
+		r.abortLeaderTransfer()
+	}
+
+	return cs
+}
+
+func (r *raft) loadState(state pb.HardState) {
+	if state.Commit < r.raftLog.committed || state.Commit > r.raftLog.lastIndex() {
+		r.logger.Panicf("%x state.commit %d is out of range [%d, %d]", r.id, state.Commit, r.raftLog.committed, r.raftLog.lastIndex())
+	}
+	r.raftLog.committed = state.Commit
+	r.Term = state.Term
+	r.Vote = state.Vote
+}
+
+// pastElectionTimeout returns true if r.electionElapsed is greater
+// than or equal to the randomized election timeout in
+// [electiontimeout, 2 * electiontimeout - 1].
+func (r *raft) pastElectionTimeout() bool {
+	return r.electionElapsed >= r.randomizedElectionTimeout
+}
+
+func (r *raft) resetRandomizedElectionTimeout() {
+	r.randomizedElectionTimeout = r.electionTimeout + globalRand.Intn(r.electionTimeout)
+}
+
+func (r *raft) sendTimeoutNow(to uint64) {
+	r.send(pb.Message{To: to, Type: pb.MsgTimeoutNow})
+}
+
+func (r *raft) abortLeaderTransfer() {
+	r.leadTransferee = None
+}
+
+// committedEntryInCurrentTerm return true if the peer has committed an entry in its term.
+func (r *raft) committedEntryInCurrentTerm() bool {
+	// NB: r.Term is never 0 on a leader, so if zeroTermOnOutOfBounds returns 0,
+	// we won't see it as a match with r.Term.
+	return r.raftLog.zeroTermOnOutOfBounds(r.raftLog.term(r.raftLog.committed)) == r.Term
+}
+
+// responseToReadIndexReq constructs a response for `req`. If `req` comes from the peer
+// itself, a blank value will be returned.
+func (r *raft) responseToReadIndexReq(req pb.Message, readIndex uint64) pb.Message {
+	if req.From == None || req.From == r.id {
+		r.readStates = append(r.readStates, ReadState{
+			Index:      readIndex,
+			RequestCtx: req.Entries[0].Data,
+		})
+		return pb.Message{}
+	}
+	return pb.Message{
+		Type:    pb.MsgReadIndexResp,
+		To:      req.From,
+		Index:   readIndex,
+		Entries: req.Entries,
+	}
+}
+
+// increaseUncommittedSize computes the size of the proposed entries and
+// determines whether they would push leader over its maxUncommittedSize limit.
+// If the new entries would exceed the limit, the method returns false. If not,
+// the increase in uncommitted entry size is recorded and the method returns
+// true.
+//
+// Empty payloads are never refused. This is used both for appending an empty
+// entry at a new leader's term, as well as leaving a joint configuration.
+func (r *raft) increaseUncommittedSize(ents []pb.Entry) bool {
+	s := payloadsSize(ents)
+	if r.uncommittedSize > 0 && s > 0 && r.uncommittedSize+s > r.maxUncommittedSize {
+		// If the uncommitted tail of the Raft log is empty, allow any size
+		// proposal. Otherwise, limit the size of the uncommitted tail of the
+		// log and drop any proposal that would push the size over the limit.
+		// Note the added requirement s>0 which is used to make sure that
+		// appending single empty entries to the log always succeeds, used both
+		// for replicating a new leader's initial empty entry, and for
+		// auto-leaving joint configurations.
+		return false
+	}
+	r.uncommittedSize += s
+	return true
+}
+
+// reduceUncommittedSize accounts for the newly committed entries by decreasing
+// the uncommitted entry size limit.
+func (r *raft) reduceUncommittedSize(s entryPayloadSize) {
+	if s > r.uncommittedSize {
+		// uncommittedSize may underestimate the size of the uncommitted Raft
+		// log tail but will never overestimate it. Saturate at 0 instead of
+		// allowing overflow.
+		r.uncommittedSize = 0
+	} else {
+		r.uncommittedSize -= s
+	}
+}
+
+func releasePendingReadIndexMessages(r *raft) {
+	if len(r.pendingReadIndexMessages) == 0 {
+		// Fast path for the common case to avoid a call to storage.LastIndex()
+		// via committedEntryInCurrentTerm.
+		return
+	}
+	if !r.committedEntryInCurrentTerm() {
+		r.logger.Error("pending MsgReadIndex should be released only after first commit in current term")
+		return
+	}
+
+	msgs := r.pendingReadIndexMessages
+	r.pendingReadIndexMessages = nil
+
+	for _, m := range msgs {
+		sendMsgReadIndexResponse(r, m)
+	}
+}
+
+func sendMsgReadIndexResponse(r *raft, m pb.Message) {
+	// thinking: use an internally defined context instead of the user given context.
+	// We can express this in terms of the term and index instead of a user-supplied value.
+	// This would allow multiple reads to piggyback on the same message.
+	switch r.readOnly.option {
+	// If more than the local vote is needed, go through a full broadcast.
+	case ReadOnlySafe:
+		r.readOnly.addRequest(r.raftLog.committed, m)
+		// The local node automatically acks the request.
+		r.readOnly.recvAck(r.id, m.Entries[0].Data)
+		r.bcastHeartbeatWithCtx(m.Entries[0].Data)
+	case ReadOnlyLeaseBased:
+		if resp := r.responseToReadIndexReq(m, r.raftLog.committed); resp.To != None {
+			r.send(resp)
+		}
+	}
+}