[VOL-5486] Fix deprecated versions

Change-Id: I3e03ea246020547ae75fa92ce8cf5cbba7e8f3bb
Signed-off-by: Abhay Kumar <abhay.kumar@radisys.com>
diff --git a/vendor/google.golang.org/grpc/mem/buffer_pool.go b/vendor/google.golang.org/grpc/mem/buffer_pool.go
new file mode 100644
index 0000000..c37c58c
--- /dev/null
+++ b/vendor/google.golang.org/grpc/mem/buffer_pool.go
@@ -0,0 +1,194 @@
+/*
+ *
+ * Copyright 2024 gRPC authors.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ */
+
+package mem
+
+import (
+	"sort"
+	"sync"
+
+	"google.golang.org/grpc/internal"
+)
+
+// BufferPool is a pool of buffers that can be shared and reused, resulting in
+// decreased memory allocation.
+type BufferPool interface {
+	// Get returns a buffer with specified length from the pool.
+	Get(length int) *[]byte
+
+	// Put returns a buffer to the pool.
+	Put(*[]byte)
+}
+
+var defaultBufferPoolSizes = []int{
+	256,
+	4 << 10,  // 4KB (go page size)
+	16 << 10, // 16KB (max HTTP/2 frame size used by gRPC)
+	32 << 10, // 32KB (default buffer size for io.Copy)
+	1 << 20,  // 1MB
+}
+
+var defaultBufferPool BufferPool
+
+func init() {
+	defaultBufferPool = NewTieredBufferPool(defaultBufferPoolSizes...)
+
+	internal.SetDefaultBufferPoolForTesting = func(pool BufferPool) {
+		defaultBufferPool = pool
+	}
+
+	internal.SetBufferPoolingThresholdForTesting = func(threshold int) {
+		bufferPoolingThreshold = threshold
+	}
+}
+
+// DefaultBufferPool returns the current default buffer pool. It is a BufferPool
+// created with NewBufferPool that uses a set of default sizes optimized for
+// expected workflows.
+func DefaultBufferPool() BufferPool {
+	return defaultBufferPool
+}
+
+// NewTieredBufferPool returns a BufferPool implementation that uses multiple
+// underlying pools of the given pool sizes.
+func NewTieredBufferPool(poolSizes ...int) BufferPool {
+	sort.Ints(poolSizes)
+	pools := make([]*sizedBufferPool, len(poolSizes))
+	for i, s := range poolSizes {
+		pools[i] = newSizedBufferPool(s)
+	}
+	return &tieredBufferPool{
+		sizedPools: pools,
+	}
+}
+
+// tieredBufferPool implements the BufferPool interface with multiple tiers of
+// buffer pools for different sizes of buffers.
+type tieredBufferPool struct {
+	sizedPools   []*sizedBufferPool
+	fallbackPool simpleBufferPool
+}
+
+func (p *tieredBufferPool) Get(size int) *[]byte {
+	return p.getPool(size).Get(size)
+}
+
+func (p *tieredBufferPool) Put(buf *[]byte) {
+	p.getPool(cap(*buf)).Put(buf)
+}
+
+func (p *tieredBufferPool) getPool(size int) BufferPool {
+	poolIdx := sort.Search(len(p.sizedPools), func(i int) bool {
+		return p.sizedPools[i].defaultSize >= size
+	})
+
+	if poolIdx == len(p.sizedPools) {
+		return &p.fallbackPool
+	}
+
+	return p.sizedPools[poolIdx]
+}
+
+// sizedBufferPool is a BufferPool implementation that is optimized for specific
+// buffer sizes. For example, HTTP/2 frames within gRPC have a default max size
+// of 16kb and a sizedBufferPool can be configured to only return buffers with a
+// capacity of 16kb. Note that however it does not support returning larger
+// buffers and in fact panics if such a buffer is requested. Because of this,
+// this BufferPool implementation is not meant to be used on its own and rather
+// is intended to be embedded in a tieredBufferPool such that Get is only
+// invoked when the required size is smaller than or equal to defaultSize.
+type sizedBufferPool struct {
+	pool        sync.Pool
+	defaultSize int
+}
+
+func (p *sizedBufferPool) Get(size int) *[]byte {
+	buf := p.pool.Get().(*[]byte)
+	b := *buf
+	clear(b[:cap(b)])
+	*buf = b[:size]
+	return buf
+}
+
+func (p *sizedBufferPool) Put(buf *[]byte) {
+	if cap(*buf) < p.defaultSize {
+		// Ignore buffers that are too small to fit in the pool. Otherwise, when
+		// Get is called it will panic as it tries to index outside the bounds
+		// of the buffer.
+		return
+	}
+	p.pool.Put(buf)
+}
+
+func newSizedBufferPool(size int) *sizedBufferPool {
+	return &sizedBufferPool{
+		pool: sync.Pool{
+			New: func() any {
+				buf := make([]byte, size)
+				return &buf
+			},
+		},
+		defaultSize: size,
+	}
+}
+
+var _ BufferPool = (*simpleBufferPool)(nil)
+
+// simpleBufferPool is an implementation of the BufferPool interface that
+// attempts to pool buffers with a sync.Pool. When Get is invoked, it tries to
+// acquire a buffer from the pool but if that buffer is too small, it returns it
+// to the pool and creates a new one.
+type simpleBufferPool struct {
+	pool sync.Pool
+}
+
+func (p *simpleBufferPool) Get(size int) *[]byte {
+	bs, ok := p.pool.Get().(*[]byte)
+	if ok && cap(*bs) >= size {
+		*bs = (*bs)[:size]
+		return bs
+	}
+
+	// A buffer was pulled from the pool, but it is too small. Put it back in
+	// the pool and create one large enough.
+	if ok {
+		p.pool.Put(bs)
+	}
+
+	b := make([]byte, size)
+	return &b
+}
+
+func (p *simpleBufferPool) Put(buf *[]byte) {
+	p.pool.Put(buf)
+}
+
+var _ BufferPool = NopBufferPool{}
+
+// NopBufferPool is a buffer pool that returns new buffers without pooling.
+type NopBufferPool struct{}
+
+// Get returns a buffer with specified length from the pool.
+func (NopBufferPool) Get(length int) *[]byte {
+	b := make([]byte, length)
+	return &b
+}
+
+// Put returns a buffer to the pool.
+func (NopBufferPool) Put(*[]byte) {
+}
diff --git a/vendor/google.golang.org/grpc/mem/buffer_slice.go b/vendor/google.golang.org/grpc/mem/buffer_slice.go
new file mode 100644
index 0000000..af510d2
--- /dev/null
+++ b/vendor/google.golang.org/grpc/mem/buffer_slice.go
@@ -0,0 +1,292 @@
+/*
+ *
+ * Copyright 2024 gRPC authors.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ */
+
+package mem
+
+import (
+	"io"
+)
+
+const (
+	// 32 KiB is what io.Copy uses.
+	readAllBufSize = 32 * 1024
+)
+
+// BufferSlice offers a means to represent data that spans one or more Buffer
+// instances. A BufferSlice is meant to be immutable after creation, and methods
+// like Ref create and return copies of the slice. This is why all methods have
+// value receivers rather than pointer receivers.
+//
+// Note that any of the methods that read the underlying buffers such as Ref,
+// Len or CopyTo etc., will panic if any underlying buffers have already been
+// freed. It is recommended to not directly interact with any of the underlying
+// buffers directly, rather such interactions should be mediated through the
+// various methods on this type.
+//
+// By convention, any APIs that return (mem.BufferSlice, error) should reduce
+// the burden on the caller by never returning a mem.BufferSlice that needs to
+// be freed if the error is non-nil, unless explicitly stated.
+type BufferSlice []Buffer
+
+// Len returns the sum of the length of all the Buffers in this slice.
+//
+// # Warning
+//
+// Invoking the built-in len on a BufferSlice will return the number of buffers
+// in the slice, and *not* the value returned by this function.
+func (s BufferSlice) Len() int {
+	var length int
+	for _, b := range s {
+		length += b.Len()
+	}
+	return length
+}
+
+// Ref invokes Ref on each buffer in the slice.
+func (s BufferSlice) Ref() {
+	for _, b := range s {
+		b.Ref()
+	}
+}
+
+// Free invokes Buffer.Free() on each Buffer in the slice.
+func (s BufferSlice) Free() {
+	for _, b := range s {
+		b.Free()
+	}
+}
+
+// CopyTo copies each of the underlying Buffer's data into the given buffer,
+// returning the number of bytes copied. Has the same semantics as the copy
+// builtin in that it will copy as many bytes as it can, stopping when either dst
+// is full or s runs out of data, returning the minimum of s.Len() and len(dst).
+func (s BufferSlice) CopyTo(dst []byte) int {
+	off := 0
+	for _, b := range s {
+		off += copy(dst[off:], b.ReadOnlyData())
+	}
+	return off
+}
+
+// Materialize concatenates all the underlying Buffer's data into a single
+// contiguous buffer using CopyTo.
+func (s BufferSlice) Materialize() []byte {
+	l := s.Len()
+	if l == 0 {
+		return nil
+	}
+	out := make([]byte, l)
+	s.CopyTo(out)
+	return out
+}
+
+// MaterializeToBuffer functions like Materialize except that it writes the data
+// to a single Buffer pulled from the given BufferPool.
+//
+// As a special case, if the input BufferSlice only actually has one Buffer, this
+// function simply increases the refcount before returning said Buffer. Freeing this
+// buffer won't release it until the BufferSlice is itself released.
+func (s BufferSlice) MaterializeToBuffer(pool BufferPool) Buffer {
+	if len(s) == 1 {
+		s[0].Ref()
+		return s[0]
+	}
+	sLen := s.Len()
+	if sLen == 0 {
+		return emptyBuffer{}
+	}
+	buf := pool.Get(sLen)
+	s.CopyTo(*buf)
+	return NewBuffer(buf, pool)
+}
+
+// Reader returns a new Reader for the input slice after taking references to
+// each underlying buffer.
+func (s BufferSlice) Reader() Reader {
+	s.Ref()
+	return &sliceReader{
+		data: s,
+		len:  s.Len(),
+	}
+}
+
+// Reader exposes a BufferSlice's data as an io.Reader, allowing it to interface
+// with other parts systems. It also provides an additional convenience method
+// Remaining(), which returns the number of unread bytes remaining in the slice.
+// Buffers will be freed as they are read.
+type Reader interface {
+	io.Reader
+	io.ByteReader
+	// Close frees the underlying BufferSlice and never returns an error. Subsequent
+	// calls to Read will return (0, io.EOF).
+	Close() error
+	// Remaining returns the number of unread bytes remaining in the slice.
+	Remaining() int
+	// Reset frees the currently held buffer slice and starts reading from the
+	// provided slice. This allows reusing the reader object.
+	Reset(s BufferSlice)
+}
+
+type sliceReader struct {
+	data BufferSlice
+	len  int
+	// The index into data[0].ReadOnlyData().
+	bufferIdx int
+}
+
+func (r *sliceReader) Remaining() int {
+	return r.len
+}
+
+func (r *sliceReader) Reset(s BufferSlice) {
+	r.data.Free()
+	s.Ref()
+	r.data = s
+	r.len = s.Len()
+	r.bufferIdx = 0
+}
+
+func (r *sliceReader) Close() error {
+	r.data.Free()
+	r.data = nil
+	r.len = 0
+	return nil
+}
+
+func (r *sliceReader) freeFirstBufferIfEmpty() bool {
+	if len(r.data) == 0 || r.bufferIdx != len(r.data[0].ReadOnlyData()) {
+		return false
+	}
+
+	r.data[0].Free()
+	r.data = r.data[1:]
+	r.bufferIdx = 0
+	return true
+}
+
+func (r *sliceReader) Read(buf []byte) (n int, _ error) {
+	if r.len == 0 {
+		return 0, io.EOF
+	}
+
+	for len(buf) != 0 && r.len != 0 {
+		// Copy as much as possible from the first Buffer in the slice into the
+		// given byte slice.
+		data := r.data[0].ReadOnlyData()
+		copied := copy(buf, data[r.bufferIdx:])
+		r.len -= copied       // Reduce len by the number of bytes copied.
+		r.bufferIdx += copied // Increment the buffer index.
+		n += copied           // Increment the total number of bytes read.
+		buf = buf[copied:]    // Shrink the given byte slice.
+
+		// If we have copied all the data from the first Buffer, free it and advance to
+		// the next in the slice.
+		r.freeFirstBufferIfEmpty()
+	}
+
+	return n, nil
+}
+
+func (r *sliceReader) ReadByte() (byte, error) {
+	if r.len == 0 {
+		return 0, io.EOF
+	}
+
+	// There may be any number of empty buffers in the slice, clear them all until a
+	// non-empty buffer is reached. This is guaranteed to exit since r.len is not 0.
+	for r.freeFirstBufferIfEmpty() {
+	}
+
+	b := r.data[0].ReadOnlyData()[r.bufferIdx]
+	r.len--
+	r.bufferIdx++
+	// Free the first buffer in the slice if the last byte was read
+	r.freeFirstBufferIfEmpty()
+	return b, nil
+}
+
+var _ io.Writer = (*writer)(nil)
+
+type writer struct {
+	buffers *BufferSlice
+	pool    BufferPool
+}
+
+func (w *writer) Write(p []byte) (n int, err error) {
+	b := Copy(p, w.pool)
+	*w.buffers = append(*w.buffers, b)
+	return b.Len(), nil
+}
+
+// NewWriter wraps the given BufferSlice and BufferPool to implement the
+// io.Writer interface. Every call to Write copies the contents of the given
+// buffer into a new Buffer pulled from the given pool and the Buffer is
+// added to the given BufferSlice.
+func NewWriter(buffers *BufferSlice, pool BufferPool) io.Writer {
+	return &writer{buffers: buffers, pool: pool}
+}
+
+// ReadAll reads from r until an error or EOF and returns the data it read.
+// A successful call returns err == nil, not err == EOF. Because ReadAll is
+// defined to read from src until EOF, it does not treat an EOF from Read
+// as an error to be reported.
+//
+// Important: A failed call returns a non-nil error and may also return
+// partially read buffers. It is the responsibility of the caller to free the
+// BufferSlice returned, or its memory will not be reused.
+func ReadAll(r io.Reader, pool BufferPool) (BufferSlice, error) {
+	var result BufferSlice
+	if wt, ok := r.(io.WriterTo); ok {
+		// This is more optimal since wt knows the size of chunks it wants to
+		// write and, hence, we can allocate buffers of an optimal size to fit
+		// them. E.g. might be a single big chunk, and we wouldn't chop it
+		// into pieces.
+		w := NewWriter(&result, pool)
+		_, err := wt.WriteTo(w)
+		return result, err
+	}
+nextBuffer:
+	for {
+		buf := pool.Get(readAllBufSize)
+		// We asked for 32KiB but may have been given a bigger buffer.
+		// Use all of it if that's the case.
+		*buf = (*buf)[:cap(*buf)]
+		usedCap := 0
+		for {
+			n, err := r.Read((*buf)[usedCap:])
+			usedCap += n
+			if err != nil {
+				if usedCap == 0 {
+					// Nothing in this buf, put it back
+					pool.Put(buf)
+				} else {
+					*buf = (*buf)[:usedCap]
+					result = append(result, NewBuffer(buf, pool))
+				}
+				if err == io.EOF {
+					err = nil
+				}
+				return result, err
+			}
+			if len(*buf) == usedCap {
+				result = append(result, NewBuffer(buf, pool))
+				continue nextBuffer
+			}
+		}
+	}
+}
diff --git a/vendor/google.golang.org/grpc/mem/buffers.go b/vendor/google.golang.org/grpc/mem/buffers.go
new file mode 100644
index 0000000..ecbf0b9
--- /dev/null
+++ b/vendor/google.golang.org/grpc/mem/buffers.go
@@ -0,0 +1,268 @@
+/*
+ *
+ * Copyright 2024 gRPC authors.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ */
+
+// Package mem provides utilities that facilitate memory reuse in byte slices
+// that are used as buffers.
+//
+// # Experimental
+//
+// Notice: All APIs in this package are EXPERIMENTAL and may be changed or
+// removed in a later release.
+package mem
+
+import (
+	"fmt"
+	"sync"
+	"sync/atomic"
+)
+
+// A Buffer represents a reference counted piece of data (in bytes) that can be
+// acquired by a call to NewBuffer() or Copy(). A reference to a Buffer may be
+// released by calling Free(), which invokes the free function given at creation
+// only after all references are released.
+//
+// Note that a Buffer is not safe for concurrent access and instead each
+// goroutine should use its own reference to the data, which can be acquired via
+// a call to Ref().
+//
+// Attempts to access the underlying data after releasing the reference to the
+// Buffer will panic.
+type Buffer interface {
+	// ReadOnlyData returns the underlying byte slice. Note that it is undefined
+	// behavior to modify the contents of this slice in any way.
+	ReadOnlyData() []byte
+	// Ref increases the reference counter for this Buffer.
+	Ref()
+	// Free decrements this Buffer's reference counter and frees the underlying
+	// byte slice if the counter reaches 0 as a result of this call.
+	Free()
+	// Len returns the Buffer's size.
+	Len() int
+
+	split(n int) (left, right Buffer)
+	read(buf []byte) (int, Buffer)
+}
+
+var (
+	bufferPoolingThreshold = 1 << 10
+
+	bufferObjectPool = sync.Pool{New: func() any { return new(buffer) }}
+	refObjectPool    = sync.Pool{New: func() any { return new(atomic.Int32) }}
+)
+
+// IsBelowBufferPoolingThreshold returns true if the given size is less than or
+// equal to the threshold for buffer pooling. This is used to determine whether
+// to pool buffers or allocate them directly.
+func IsBelowBufferPoolingThreshold(size int) bool {
+	return size <= bufferPoolingThreshold
+}
+
+type buffer struct {
+	origData *[]byte
+	data     []byte
+	refs     *atomic.Int32
+	pool     BufferPool
+}
+
+func newBuffer() *buffer {
+	return bufferObjectPool.Get().(*buffer)
+}
+
+// NewBuffer creates a new Buffer from the given data, initializing the reference
+// counter to 1. The data will then be returned to the given pool when all
+// references to the returned Buffer are released. As a special case to avoid
+// additional allocations, if the given buffer pool is nil, the returned buffer
+// will be a "no-op" Buffer where invoking Buffer.Free() does nothing and the
+// underlying data is never freed.
+//
+// Note that the backing array of the given data is not copied.
+func NewBuffer(data *[]byte, pool BufferPool) Buffer {
+	// Use the buffer's capacity instead of the length, otherwise buffers may
+	// not be reused under certain conditions. For example, if a large buffer
+	// is acquired from the pool, but fewer bytes than the buffering threshold
+	// are written to it, the buffer will not be returned to the pool.
+	if pool == nil || IsBelowBufferPoolingThreshold(cap(*data)) {
+		return (SliceBuffer)(*data)
+	}
+	b := newBuffer()
+	b.origData = data
+	b.data = *data
+	b.pool = pool
+	b.refs = refObjectPool.Get().(*atomic.Int32)
+	b.refs.Add(1)
+	return b
+}
+
+// Copy creates a new Buffer from the given data, initializing the reference
+// counter to 1.
+//
+// It acquires a []byte from the given pool and copies over the backing array
+// of the given data. The []byte acquired from the pool is returned to the
+// pool when all references to the returned Buffer are released.
+func Copy(data []byte, pool BufferPool) Buffer {
+	if IsBelowBufferPoolingThreshold(len(data)) {
+		buf := make(SliceBuffer, len(data))
+		copy(buf, data)
+		return buf
+	}
+
+	buf := pool.Get(len(data))
+	copy(*buf, data)
+	return NewBuffer(buf, pool)
+}
+
+func (b *buffer) ReadOnlyData() []byte {
+	if b.refs == nil {
+		panic("Cannot read freed buffer")
+	}
+	return b.data
+}
+
+func (b *buffer) Ref() {
+	if b.refs == nil {
+		panic("Cannot ref freed buffer")
+	}
+	b.refs.Add(1)
+}
+
+func (b *buffer) Free() {
+	if b.refs == nil {
+		panic("Cannot free freed buffer")
+	}
+
+	refs := b.refs.Add(-1)
+	switch {
+	case refs > 0:
+		return
+	case refs == 0:
+		if b.pool != nil {
+			b.pool.Put(b.origData)
+		}
+
+		refObjectPool.Put(b.refs)
+		b.origData = nil
+		b.data = nil
+		b.refs = nil
+		b.pool = nil
+		bufferObjectPool.Put(b)
+	default:
+		panic("Cannot free freed buffer")
+	}
+}
+
+func (b *buffer) Len() int {
+	return len(b.ReadOnlyData())
+}
+
+func (b *buffer) split(n int) (Buffer, Buffer) {
+	if b.refs == nil {
+		panic("Cannot split freed buffer")
+	}
+
+	b.refs.Add(1)
+	split := newBuffer()
+	split.origData = b.origData
+	split.data = b.data[n:]
+	split.refs = b.refs
+	split.pool = b.pool
+
+	b.data = b.data[:n]
+
+	return b, split
+}
+
+func (b *buffer) read(buf []byte) (int, Buffer) {
+	if b.refs == nil {
+		panic("Cannot read freed buffer")
+	}
+
+	n := copy(buf, b.data)
+	if n == len(b.data) {
+		b.Free()
+		return n, nil
+	}
+
+	b.data = b.data[n:]
+	return n, b
+}
+
+func (b *buffer) String() string {
+	return fmt.Sprintf("mem.Buffer(%p, data: %p, length: %d)", b, b.ReadOnlyData(), len(b.ReadOnlyData()))
+}
+
+// ReadUnsafe reads bytes from the given Buffer into the provided slice.
+// It does not perform safety checks.
+func ReadUnsafe(dst []byte, buf Buffer) (int, Buffer) {
+	return buf.read(dst)
+}
+
+// SplitUnsafe modifies the receiver to point to the first n bytes while it
+// returns a new reference to the remaining bytes. The returned Buffer
+// functions just like a normal reference acquired using Ref().
+func SplitUnsafe(buf Buffer, n int) (left, right Buffer) {
+	return buf.split(n)
+}
+
+type emptyBuffer struct{}
+
+func (e emptyBuffer) ReadOnlyData() []byte {
+	return nil
+}
+
+func (e emptyBuffer) Ref()  {}
+func (e emptyBuffer) Free() {}
+
+func (e emptyBuffer) Len() int {
+	return 0
+}
+
+func (e emptyBuffer) split(int) (left, right Buffer) {
+	return e, e
+}
+
+func (e emptyBuffer) read([]byte) (int, Buffer) {
+	return 0, e
+}
+
+// SliceBuffer is a Buffer implementation that wraps a byte slice. It provides
+// methods for reading, splitting, and managing the byte slice.
+type SliceBuffer []byte
+
+// ReadOnlyData returns the byte slice.
+func (s SliceBuffer) ReadOnlyData() []byte { return s }
+
+// Ref is a noop implementation of Ref.
+func (s SliceBuffer) Ref() {}
+
+// Free is a noop implementation of Free.
+func (s SliceBuffer) Free() {}
+
+// Len is a noop implementation of Len.
+func (s SliceBuffer) Len() int { return len(s) }
+
+func (s SliceBuffer) split(n int) (left, right Buffer) {
+	return s[:n], s[n:]
+}
+
+func (s SliceBuffer) read(buf []byte) (int, Buffer) {
+	n := copy(buf, s)
+	if n == len(s) {
+		return n, nil
+	}
+	return n, s[n:]
+}