[VOL-5486] Fix deprecated versions

Change-Id: I3e03ea246020547ae75fa92ce8cf5cbba7e8f3bb
Signed-off-by: Abhay Kumar <abhay.kumar@radisys.com>
diff --git a/vendor/github.com/klauspost/compress/flate/inflate_gen.go b/vendor/github.com/klauspost/compress/flate/inflate_gen.go
new file mode 100644
index 0000000..2b2f993
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/inflate_gen.go
@@ -0,0 +1,1283 @@
+// Code generated by go generate gen_inflate.go. DO NOT EDIT.
+
+package flate
+
+import (
+	"bufio"
+	"bytes"
+	"fmt"
+	"math/bits"
+	"strings"
+)
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBytesBuffer() {
+	const (
+		stateInit = iota // Zero value must be stateInit
+		stateDict
+	)
+	fr := f.r.(*bytes.Buffer)
+
+	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+	// but is smart enough to keep local variables in registers, so use nb and b,
+	// inline call to moreBits and reassign b,nb back to f on return.
+	fnb, fb, dict := f.nb, f.b, &f.dict
+
+	switch f.stepState {
+	case stateInit:
+		goto readLiteral
+	case stateDict:
+		goto copyHistory
+	}
+
+readLiteral:
+	// Read literal and/or (length, distance) according to RFC section 3.2.3.
+	{
+		var v int
+		{
+			// Inlined v, err := f.huffSym(f.hl)
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hl.maxRead)
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					v = int(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		var length int
+		switch {
+		case v < 256:
+			dict.writeByte(byte(v))
+			if dict.availWrite() == 0 {
+				f.toRead = dict.readFlush()
+				f.step = huffmanBytesBuffer
+				f.stepState = stateInit
+				f.b, f.nb = fb, fnb
+				return
+			}
+			goto readLiteral
+		case v == 256:
+			f.b, f.nb = fb, fnb
+			f.finishBlock()
+			return
+		// otherwise, reference to older data
+		case v < 265:
+			length = v - (257 - 3)
+		case v < maxNumLit:
+			val := decCodeToLen[(v - 257)]
+			length = int(val.length) + 3
+			n := uint(val.extra)
+			for fnb < n {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits n>0:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			length += int(fb & bitMask32[n])
+			fb >>= n & regSizeMaskUint32
+			fnb -= n
+		default:
+			if debugDecode {
+				fmt.Println(v, ">= maxNumLit")
+			}
+			f.err = CorruptInputError(f.roffset)
+			f.b, f.nb = fb, fnb
+			return
+		}
+
+		var dist uint32
+		if f.hd == nil {
+			for fnb < 5 {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<5:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+			fb >>= 5
+			fnb -= 5
+		} else {
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hd.maxRead)
+			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+			// but is smart enough to keep local variables in registers, so use nb and b,
+			// inline call to moreBits and reassign b,nb back to f on return.
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					dist = uint32(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		switch {
+		case dist < 4:
+			dist++
+		case dist < maxNumDist:
+			nb := uint(dist-2) >> 1
+			// have 1 bit in bottom of dist, need nb more.
+			extra := (dist & 1) << (nb & regSizeMaskUint32)
+			for fnb < nb {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<nb:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			extra |= fb & bitMask32[nb]
+			fb >>= nb & regSizeMaskUint32
+			fnb -= nb
+			dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+			// slower: dist = bitMask32[nb+1] + 2 + extra
+		default:
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist too big:", dist, maxNumDist)
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		// No check on length; encoding can be prescient.
+		if dist > uint32(dict.histSize()) {
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		f.copyLen, f.copyDist = length, int(dist)
+		goto copyHistory
+	}
+
+copyHistory:
+	// Perform a backwards copy according to RFC section 3.2.3.
+	{
+		cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+		if cnt == 0 {
+			cnt = dict.writeCopy(f.copyDist, f.copyLen)
+		}
+		f.copyLen -= cnt
+
+		if dict.availWrite() == 0 || f.copyLen > 0 {
+			f.toRead = dict.readFlush()
+			f.step = huffmanBytesBuffer // We need to continue this work
+			f.stepState = stateDict
+			f.b, f.nb = fb, fnb
+			return
+		}
+		goto readLiteral
+	}
+	// Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBytesReader() {
+	const (
+		stateInit = iota // Zero value must be stateInit
+		stateDict
+	)
+	fr := f.r.(*bytes.Reader)
+
+	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+	// but is smart enough to keep local variables in registers, so use nb and b,
+	// inline call to moreBits and reassign b,nb back to f on return.
+	fnb, fb, dict := f.nb, f.b, &f.dict
+
+	switch f.stepState {
+	case stateInit:
+		goto readLiteral
+	case stateDict:
+		goto copyHistory
+	}
+
+readLiteral:
+	// Read literal and/or (length, distance) according to RFC section 3.2.3.
+	{
+		var v int
+		{
+			// Inlined v, err := f.huffSym(f.hl)
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hl.maxRead)
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					v = int(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		var length int
+		switch {
+		case v < 256:
+			dict.writeByte(byte(v))
+			if dict.availWrite() == 0 {
+				f.toRead = dict.readFlush()
+				f.step = huffmanBytesReader
+				f.stepState = stateInit
+				f.b, f.nb = fb, fnb
+				return
+			}
+			goto readLiteral
+		case v == 256:
+			f.b, f.nb = fb, fnb
+			f.finishBlock()
+			return
+		// otherwise, reference to older data
+		case v < 265:
+			length = v - (257 - 3)
+		case v < maxNumLit:
+			val := decCodeToLen[(v - 257)]
+			length = int(val.length) + 3
+			n := uint(val.extra)
+			for fnb < n {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits n>0:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			length += int(fb & bitMask32[n])
+			fb >>= n & regSizeMaskUint32
+			fnb -= n
+		default:
+			if debugDecode {
+				fmt.Println(v, ">= maxNumLit")
+			}
+			f.err = CorruptInputError(f.roffset)
+			f.b, f.nb = fb, fnb
+			return
+		}
+
+		var dist uint32
+		if f.hd == nil {
+			for fnb < 5 {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<5:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+			fb >>= 5
+			fnb -= 5
+		} else {
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hd.maxRead)
+			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+			// but is smart enough to keep local variables in registers, so use nb and b,
+			// inline call to moreBits and reassign b,nb back to f on return.
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					dist = uint32(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		switch {
+		case dist < 4:
+			dist++
+		case dist < maxNumDist:
+			nb := uint(dist-2) >> 1
+			// have 1 bit in bottom of dist, need nb more.
+			extra := (dist & 1) << (nb & regSizeMaskUint32)
+			for fnb < nb {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<nb:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			extra |= fb & bitMask32[nb]
+			fb >>= nb & regSizeMaskUint32
+			fnb -= nb
+			dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+			// slower: dist = bitMask32[nb+1] + 2 + extra
+		default:
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist too big:", dist, maxNumDist)
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		// No check on length; encoding can be prescient.
+		if dist > uint32(dict.histSize()) {
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		f.copyLen, f.copyDist = length, int(dist)
+		goto copyHistory
+	}
+
+copyHistory:
+	// Perform a backwards copy according to RFC section 3.2.3.
+	{
+		cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+		if cnt == 0 {
+			cnt = dict.writeCopy(f.copyDist, f.copyLen)
+		}
+		f.copyLen -= cnt
+
+		if dict.availWrite() == 0 || f.copyLen > 0 {
+			f.toRead = dict.readFlush()
+			f.step = huffmanBytesReader // We need to continue this work
+			f.stepState = stateDict
+			f.b, f.nb = fb, fnb
+			return
+		}
+		goto readLiteral
+	}
+	// Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBufioReader() {
+	const (
+		stateInit = iota // Zero value must be stateInit
+		stateDict
+	)
+	fr := f.r.(*bufio.Reader)
+
+	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+	// but is smart enough to keep local variables in registers, so use nb and b,
+	// inline call to moreBits and reassign b,nb back to f on return.
+	fnb, fb, dict := f.nb, f.b, &f.dict
+
+	switch f.stepState {
+	case stateInit:
+		goto readLiteral
+	case stateDict:
+		goto copyHistory
+	}
+
+readLiteral:
+	// Read literal and/or (length, distance) according to RFC section 3.2.3.
+	{
+		var v int
+		{
+			// Inlined v, err := f.huffSym(f.hl)
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hl.maxRead)
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					v = int(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		var length int
+		switch {
+		case v < 256:
+			dict.writeByte(byte(v))
+			if dict.availWrite() == 0 {
+				f.toRead = dict.readFlush()
+				f.step = huffmanBufioReader
+				f.stepState = stateInit
+				f.b, f.nb = fb, fnb
+				return
+			}
+			goto readLiteral
+		case v == 256:
+			f.b, f.nb = fb, fnb
+			f.finishBlock()
+			return
+		// otherwise, reference to older data
+		case v < 265:
+			length = v - (257 - 3)
+		case v < maxNumLit:
+			val := decCodeToLen[(v - 257)]
+			length = int(val.length) + 3
+			n := uint(val.extra)
+			for fnb < n {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits n>0:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			length += int(fb & bitMask32[n])
+			fb >>= n & regSizeMaskUint32
+			fnb -= n
+		default:
+			if debugDecode {
+				fmt.Println(v, ">= maxNumLit")
+			}
+			f.err = CorruptInputError(f.roffset)
+			f.b, f.nb = fb, fnb
+			return
+		}
+
+		var dist uint32
+		if f.hd == nil {
+			for fnb < 5 {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<5:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+			fb >>= 5
+			fnb -= 5
+		} else {
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hd.maxRead)
+			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+			// but is smart enough to keep local variables in registers, so use nb and b,
+			// inline call to moreBits and reassign b,nb back to f on return.
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					dist = uint32(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		switch {
+		case dist < 4:
+			dist++
+		case dist < maxNumDist:
+			nb := uint(dist-2) >> 1
+			// have 1 bit in bottom of dist, need nb more.
+			extra := (dist & 1) << (nb & regSizeMaskUint32)
+			for fnb < nb {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<nb:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			extra |= fb & bitMask32[nb]
+			fb >>= nb & regSizeMaskUint32
+			fnb -= nb
+			dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+			// slower: dist = bitMask32[nb+1] + 2 + extra
+		default:
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist too big:", dist, maxNumDist)
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		// No check on length; encoding can be prescient.
+		if dist > uint32(dict.histSize()) {
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		f.copyLen, f.copyDist = length, int(dist)
+		goto copyHistory
+	}
+
+copyHistory:
+	// Perform a backwards copy according to RFC section 3.2.3.
+	{
+		cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+		if cnt == 0 {
+			cnt = dict.writeCopy(f.copyDist, f.copyLen)
+		}
+		f.copyLen -= cnt
+
+		if dict.availWrite() == 0 || f.copyLen > 0 {
+			f.toRead = dict.readFlush()
+			f.step = huffmanBufioReader // We need to continue this work
+			f.stepState = stateDict
+			f.b, f.nb = fb, fnb
+			return
+		}
+		goto readLiteral
+	}
+	// Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanStringsReader() {
+	const (
+		stateInit = iota // Zero value must be stateInit
+		stateDict
+	)
+	fr := f.r.(*strings.Reader)
+
+	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+	// but is smart enough to keep local variables in registers, so use nb and b,
+	// inline call to moreBits and reassign b,nb back to f on return.
+	fnb, fb, dict := f.nb, f.b, &f.dict
+
+	switch f.stepState {
+	case stateInit:
+		goto readLiteral
+	case stateDict:
+		goto copyHistory
+	}
+
+readLiteral:
+	// Read literal and/or (length, distance) according to RFC section 3.2.3.
+	{
+		var v int
+		{
+			// Inlined v, err := f.huffSym(f.hl)
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hl.maxRead)
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					v = int(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		var length int
+		switch {
+		case v < 256:
+			dict.writeByte(byte(v))
+			if dict.availWrite() == 0 {
+				f.toRead = dict.readFlush()
+				f.step = huffmanStringsReader
+				f.stepState = stateInit
+				f.b, f.nb = fb, fnb
+				return
+			}
+			goto readLiteral
+		case v == 256:
+			f.b, f.nb = fb, fnb
+			f.finishBlock()
+			return
+		// otherwise, reference to older data
+		case v < 265:
+			length = v - (257 - 3)
+		case v < maxNumLit:
+			val := decCodeToLen[(v - 257)]
+			length = int(val.length) + 3
+			n := uint(val.extra)
+			for fnb < n {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits n>0:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			length += int(fb & bitMask32[n])
+			fb >>= n & regSizeMaskUint32
+			fnb -= n
+		default:
+			if debugDecode {
+				fmt.Println(v, ">= maxNumLit")
+			}
+			f.err = CorruptInputError(f.roffset)
+			f.b, f.nb = fb, fnb
+			return
+		}
+
+		var dist uint32
+		if f.hd == nil {
+			for fnb < 5 {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<5:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+			fb >>= 5
+			fnb -= 5
+		} else {
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hd.maxRead)
+			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+			// but is smart enough to keep local variables in registers, so use nb and b,
+			// inline call to moreBits and reassign b,nb back to f on return.
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					dist = uint32(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		switch {
+		case dist < 4:
+			dist++
+		case dist < maxNumDist:
+			nb := uint(dist-2) >> 1
+			// have 1 bit in bottom of dist, need nb more.
+			extra := (dist & 1) << (nb & regSizeMaskUint32)
+			for fnb < nb {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<nb:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			extra |= fb & bitMask32[nb]
+			fb >>= nb & regSizeMaskUint32
+			fnb -= nb
+			dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+			// slower: dist = bitMask32[nb+1] + 2 + extra
+		default:
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist too big:", dist, maxNumDist)
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		// No check on length; encoding can be prescient.
+		if dist > uint32(dict.histSize()) {
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		f.copyLen, f.copyDist = length, int(dist)
+		goto copyHistory
+	}
+
+copyHistory:
+	// Perform a backwards copy according to RFC section 3.2.3.
+	{
+		cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+		if cnt == 0 {
+			cnt = dict.writeCopy(f.copyDist, f.copyLen)
+		}
+		f.copyLen -= cnt
+
+		if dict.availWrite() == 0 || f.copyLen > 0 {
+			f.toRead = dict.readFlush()
+			f.step = huffmanStringsReader // We need to continue this work
+			f.stepState = stateDict
+			f.b, f.nb = fb, fnb
+			return
+		}
+		goto readLiteral
+	}
+	// Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanGenericReader() {
+	const (
+		stateInit = iota // Zero value must be stateInit
+		stateDict
+	)
+	fr := f.r.(Reader)
+
+	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+	// but is smart enough to keep local variables in registers, so use nb and b,
+	// inline call to moreBits and reassign b,nb back to f on return.
+	fnb, fb, dict := f.nb, f.b, &f.dict
+
+	switch f.stepState {
+	case stateInit:
+		goto readLiteral
+	case stateDict:
+		goto copyHistory
+	}
+
+readLiteral:
+	// Read literal and/or (length, distance) according to RFC section 3.2.3.
+	{
+		var v int
+		{
+			// Inlined v, err := f.huffSym(f.hl)
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hl.maxRead)
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					v = int(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		var length int
+		switch {
+		case v < 256:
+			dict.writeByte(byte(v))
+			if dict.availWrite() == 0 {
+				f.toRead = dict.readFlush()
+				f.step = huffmanGenericReader
+				f.stepState = stateInit
+				f.b, f.nb = fb, fnb
+				return
+			}
+			goto readLiteral
+		case v == 256:
+			f.b, f.nb = fb, fnb
+			f.finishBlock()
+			return
+		// otherwise, reference to older data
+		case v < 265:
+			length = v - (257 - 3)
+		case v < maxNumLit:
+			val := decCodeToLen[(v - 257)]
+			length = int(val.length) + 3
+			n := uint(val.extra)
+			for fnb < n {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits n>0:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			length += int(fb & bitMask32[n])
+			fb >>= n & regSizeMaskUint32
+			fnb -= n
+		default:
+			if debugDecode {
+				fmt.Println(v, ">= maxNumLit")
+			}
+			f.err = CorruptInputError(f.roffset)
+			f.b, f.nb = fb, fnb
+			return
+		}
+
+		var dist uint32
+		if f.hd == nil {
+			for fnb < 5 {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<5:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+			fb >>= 5
+			fnb -= 5
+		} else {
+			// Since a huffmanDecoder can be empty or be composed of a degenerate tree
+			// with single element, huffSym must error on these two edge cases. In both
+			// cases, the chunks slice will be 0 for the invalid sequence, leading it
+			// satisfy the n == 0 check below.
+			n := uint(f.hd.maxRead)
+			// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+			// but is smart enough to keep local variables in registers, so use nb and b,
+			// inline call to moreBits and reassign b,nb back to f on return.
+			for {
+				for fnb < n {
+					c, err := fr.ReadByte()
+					if err != nil {
+						f.b, f.nb = fb, fnb
+						f.err = noEOF(err)
+						return
+					}
+					f.roffset++
+					fb |= uint32(c) << (fnb & regSizeMaskUint32)
+					fnb += 8
+				}
+				chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+				n = uint(chunk & huffmanCountMask)
+				if n > huffmanChunkBits {
+					chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+					n = uint(chunk & huffmanCountMask)
+				}
+				if n <= fnb {
+					if n == 0 {
+						f.b, f.nb = fb, fnb
+						if debugDecode {
+							fmt.Println("huffsym: n==0")
+						}
+						f.err = CorruptInputError(f.roffset)
+						return
+					}
+					fb = fb >> (n & regSizeMaskUint32)
+					fnb = fnb - n
+					dist = uint32(chunk >> huffmanValueShift)
+					break
+				}
+			}
+		}
+
+		switch {
+		case dist < 4:
+			dist++
+		case dist < maxNumDist:
+			nb := uint(dist-2) >> 1
+			// have 1 bit in bottom of dist, need nb more.
+			extra := (dist & 1) << (nb & regSizeMaskUint32)
+			for fnb < nb {
+				c, err := fr.ReadByte()
+				if err != nil {
+					f.b, f.nb = fb, fnb
+					if debugDecode {
+						fmt.Println("morebits f.nb<nb:", err)
+					}
+					f.err = err
+					return
+				}
+				f.roffset++
+				fb |= uint32(c) << (fnb & regSizeMaskUint32)
+				fnb += 8
+			}
+			extra |= fb & bitMask32[nb]
+			fb >>= nb & regSizeMaskUint32
+			fnb -= nb
+			dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+			// slower: dist = bitMask32[nb+1] + 2 + extra
+		default:
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist too big:", dist, maxNumDist)
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		// No check on length; encoding can be prescient.
+		if dist > uint32(dict.histSize()) {
+			f.b, f.nb = fb, fnb
+			if debugDecode {
+				fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+			}
+			f.err = CorruptInputError(f.roffset)
+			return
+		}
+
+		f.copyLen, f.copyDist = length, int(dist)
+		goto copyHistory
+	}
+
+copyHistory:
+	// Perform a backwards copy according to RFC section 3.2.3.
+	{
+		cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+		if cnt == 0 {
+			cnt = dict.writeCopy(f.copyDist, f.copyLen)
+		}
+		f.copyLen -= cnt
+
+		if dict.availWrite() == 0 || f.copyLen > 0 {
+			f.toRead = dict.readFlush()
+			f.step = huffmanGenericReader // We need to continue this work
+			f.stepState = stateDict
+			f.b, f.nb = fb, fnb
+			return
+		}
+		goto readLiteral
+	}
+	// Not reached
+}
+
+func (f *decompressor) huffmanBlockDecoder() {
+	switch f.r.(type) {
+	case *bytes.Buffer:
+		f.huffmanBytesBuffer()
+	case *bytes.Reader:
+		f.huffmanBytesReader()
+	case *bufio.Reader:
+		f.huffmanBufioReader()
+	case *strings.Reader:
+		f.huffmanStringsReader()
+	case Reader:
+		f.huffmanGenericReader()
+	default:
+		f.huffmanGenericReader()
+	}
+}