[VOL-5486] Fix deprecated versions

Change-Id: I3e03ea246020547ae75fa92ce8cf5cbba7e8f3bb
Signed-off-by: Abhay Kumar <abhay.kumar@radisys.com>
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_code.go b/vendor/github.com/klauspost/compress/flate/huffman_code.go
new file mode 100644
index 0000000..be7b58b
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_code.go
@@ -0,0 +1,417 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+	"math"
+	"math/bits"
+)
+
+const (
+	maxBitsLimit = 16
+	// number of valid literals
+	literalCount = 286
+)
+
+// hcode is a huffman code with a bit code and bit length.
+type hcode uint32
+
+func (h hcode) len() uint8 {
+	return uint8(h)
+}
+
+func (h hcode) code64() uint64 {
+	return uint64(h >> 8)
+}
+
+func (h hcode) zero() bool {
+	return h == 0
+}
+
+type huffmanEncoder struct {
+	codes    []hcode
+	bitCount [17]int32
+
+	// Allocate a reusable buffer with the longest possible frequency table.
+	// Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
+	// The largest of these is literalCount, so we allocate for that case.
+	freqcache [literalCount + 1]literalNode
+}
+
+type literalNode struct {
+	literal uint16
+	freq    uint16
+}
+
+// A levelInfo describes the state of the constructed tree for a given depth.
+type levelInfo struct {
+	// Our level.  for better printing
+	level int32
+
+	// The frequency of the last node at this level
+	lastFreq int32
+
+	// The frequency of the next character to add to this level
+	nextCharFreq int32
+
+	// The frequency of the next pair (from level below) to add to this level.
+	// Only valid if the "needed" value of the next lower level is 0.
+	nextPairFreq int32
+
+	// The number of chains remaining to generate for this level before moving
+	// up to the next level
+	needed int32
+}
+
+// set sets the code and length of an hcode.
+func (h *hcode) set(code uint16, length uint8) {
+	*h = hcode(length) | (hcode(code) << 8)
+}
+
+func newhcode(code uint16, length uint8) hcode {
+	return hcode(length) | (hcode(code) << 8)
+}
+
+func reverseBits(number uint16, bitLength byte) uint16 {
+	return bits.Reverse16(number << ((16 - bitLength) & 15))
+}
+
+func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
+
+func newHuffmanEncoder(size int) *huffmanEncoder {
+	// Make capacity to next power of two.
+	c := uint(bits.Len32(uint32(size - 1)))
+	return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
+}
+
+// Generates a HuffmanCode corresponding to the fixed literal table
+func generateFixedLiteralEncoding() *huffmanEncoder {
+	h := newHuffmanEncoder(literalCount)
+	codes := h.codes
+	var ch uint16
+	for ch = 0; ch < literalCount; ch++ {
+		var bits uint16
+		var size uint8
+		switch {
+		case ch < 144:
+			// size 8, 000110000  .. 10111111
+			bits = ch + 48
+			size = 8
+		case ch < 256:
+			// size 9, 110010000 .. 111111111
+			bits = ch + 400 - 144
+			size = 9
+		case ch < 280:
+			// size 7, 0000000 .. 0010111
+			bits = ch - 256
+			size = 7
+		default:
+			// size 8, 11000000 .. 11000111
+			bits = ch + 192 - 280
+			size = 8
+		}
+		codes[ch] = newhcode(reverseBits(bits, size), size)
+	}
+	return h
+}
+
+func generateFixedOffsetEncoding() *huffmanEncoder {
+	h := newHuffmanEncoder(30)
+	codes := h.codes
+	for ch := range codes {
+		codes[ch] = newhcode(reverseBits(uint16(ch), 5), 5)
+	}
+	return h
+}
+
+var fixedLiteralEncoding = generateFixedLiteralEncoding()
+var fixedOffsetEncoding = generateFixedOffsetEncoding()
+
+func (h *huffmanEncoder) bitLength(freq []uint16) int {
+	var total int
+	for i, f := range freq {
+		if f != 0 {
+			total += int(f) * int(h.codes[i].len())
+		}
+	}
+	return total
+}
+
+func (h *huffmanEncoder) bitLengthRaw(b []byte) int {
+	var total int
+	for _, f := range b {
+		total += int(h.codes[f].len())
+	}
+	return total
+}
+
+// canReuseBits returns the number of bits or math.MaxInt32 if the encoder cannot be reused.
+func (h *huffmanEncoder) canReuseBits(freq []uint16) int {
+	var total int
+	for i, f := range freq {
+		if f != 0 {
+			code := h.codes[i]
+			if code.zero() {
+				return math.MaxInt32
+			}
+			total += int(f) * int(code.len())
+		}
+	}
+	return total
+}
+
+// Return the number of literals assigned to each bit size in the Huffman encoding
+//
+// This method is only called when list.length >= 3
+// The cases of 0, 1, and 2 literals are handled by special case code.
+//
+// list  An array of the literals with non-zero frequencies
+//
+//	and their associated frequencies. The array is in order of increasing
+//	frequency, and has as its last element a special element with frequency
+//	MaxInt32
+//
+// maxBits     The maximum number of bits that should be used to encode any literal.
+//
+//	Must be less than 16.
+//
+// return      An integer array in which array[i] indicates the number of literals
+//
+//	that should be encoded in i bits.
+func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
+	if maxBits >= maxBitsLimit {
+		panic("flate: maxBits too large")
+	}
+	n := int32(len(list))
+	list = list[0 : n+1]
+	list[n] = maxNode()
+
+	// The tree can't have greater depth than n - 1, no matter what. This
+	// saves a little bit of work in some small cases
+	if maxBits > n-1 {
+		maxBits = n - 1
+	}
+
+	// Create information about each of the levels.
+	// A bogus "Level 0" whose sole purpose is so that
+	// level1.prev.needed==0.  This makes level1.nextPairFreq
+	// be a legitimate value that never gets chosen.
+	var levels [maxBitsLimit]levelInfo
+	// leafCounts[i] counts the number of literals at the left
+	// of ancestors of the rightmost node at level i.
+	// leafCounts[i][j] is the number of literals at the left
+	// of the level j ancestor.
+	var leafCounts [maxBitsLimit][maxBitsLimit]int32
+
+	// Descending to only have 1 bounds check.
+	l2f := int32(list[2].freq)
+	l1f := int32(list[1].freq)
+	l0f := int32(list[0].freq) + int32(list[1].freq)
+
+	for level := int32(1); level <= maxBits; level++ {
+		// For every level, the first two items are the first two characters.
+		// We initialize the levels as if we had already figured this out.
+		levels[level] = levelInfo{
+			level:        level,
+			lastFreq:     l1f,
+			nextCharFreq: l2f,
+			nextPairFreq: l0f,
+		}
+		leafCounts[level][level] = 2
+		if level == 1 {
+			levels[level].nextPairFreq = math.MaxInt32
+		}
+	}
+
+	// We need a total of 2*n - 2 items at top level and have already generated 2.
+	levels[maxBits].needed = 2*n - 4
+
+	level := uint32(maxBits)
+	for level < 16 {
+		l := &levels[level]
+		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
+			// We've run out of both leafs and pairs.
+			// End all calculations for this level.
+			// To make sure we never come back to this level or any lower level,
+			// set nextPairFreq impossibly large.
+			l.needed = 0
+			levels[level+1].nextPairFreq = math.MaxInt32
+			level++
+			continue
+		}
+
+		prevFreq := l.lastFreq
+		if l.nextCharFreq < l.nextPairFreq {
+			// The next item on this row is a leaf node.
+			n := leafCounts[level][level] + 1
+			l.lastFreq = l.nextCharFreq
+			// Lower leafCounts are the same of the previous node.
+			leafCounts[level][level] = n
+			e := list[n]
+			if e.literal < math.MaxUint16 {
+				l.nextCharFreq = int32(e.freq)
+			} else {
+				l.nextCharFreq = math.MaxInt32
+			}
+		} else {
+			// The next item on this row is a pair from the previous row.
+			// nextPairFreq isn't valid until we generate two
+			// more values in the level below
+			l.lastFreq = l.nextPairFreq
+			// Take leaf counts from the lower level, except counts[level] remains the same.
+			if true {
+				save := leafCounts[level][level]
+				leafCounts[level] = leafCounts[level-1]
+				leafCounts[level][level] = save
+			} else {
+				copy(leafCounts[level][:level], leafCounts[level-1][:level])
+			}
+			levels[l.level-1].needed = 2
+		}
+
+		if l.needed--; l.needed == 0 {
+			// We've done everything we need to do for this level.
+			// Continue calculating one level up. Fill in nextPairFreq
+			// of that level with the sum of the two nodes we've just calculated on
+			// this level.
+			if l.level == maxBits {
+				// All done!
+				break
+			}
+			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
+			level++
+		} else {
+			// If we stole from below, move down temporarily to replenish it.
+			for levels[level-1].needed > 0 {
+				level--
+			}
+		}
+	}
+
+	// Somethings is wrong if at the end, the top level is null or hasn't used
+	// all of the leaves.
+	if leafCounts[maxBits][maxBits] != n {
+		panic("leafCounts[maxBits][maxBits] != n")
+	}
+
+	bitCount := h.bitCount[:maxBits+1]
+	bits := 1
+	counts := &leafCounts[maxBits]
+	for level := maxBits; level > 0; level-- {
+		// chain.leafCount gives the number of literals requiring at least "bits"
+		// bits to encode.
+		bitCount[bits] = counts[level] - counts[level-1]
+		bits++
+	}
+	return bitCount
+}
+
+// Look at the leaves and assign them a bit count and an encoding as specified
+// in RFC 1951 3.2.2
+func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
+	code := uint16(0)
+	for n, bits := range bitCount {
+		code <<= 1
+		if n == 0 || bits == 0 {
+			continue
+		}
+		// The literals list[len(list)-bits] .. list[len(list)-bits]
+		// are encoded using "bits" bits, and get the values
+		// code, code + 1, ....  The code values are
+		// assigned in literal order (not frequency order).
+		chunk := list[len(list)-int(bits):]
+
+		sortByLiteral(chunk)
+		for _, node := range chunk {
+			h.codes[node.literal] = newhcode(reverseBits(code, uint8(n)), uint8(n))
+			code++
+		}
+		list = list[0 : len(list)-int(bits)]
+	}
+}
+
+// Update this Huffman Code object to be the minimum code for the specified frequency count.
+//
+// freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
+// maxBits  The maximum number of bits to use for any literal.
+func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
+	list := h.freqcache[:len(freq)+1]
+	codes := h.codes[:len(freq)]
+	// Number of non-zero literals
+	count := 0
+	// Set list to be the set of all non-zero literals and their frequencies
+	for i, f := range freq {
+		if f != 0 {
+			list[count] = literalNode{uint16(i), f}
+			count++
+		} else {
+			codes[i] = 0
+		}
+	}
+	list[count] = literalNode{}
+
+	list = list[:count]
+	if count <= 2 {
+		// Handle the small cases here, because they are awkward for the general case code. With
+		// two or fewer literals, everything has bit length 1.
+		for i, node := range list {
+			// "list" is in order of increasing literal value.
+			h.codes[node.literal].set(uint16(i), 1)
+		}
+		return
+	}
+	sortByFreq(list)
+
+	// Get the number of literals for each bit count
+	bitCount := h.bitCounts(list, maxBits)
+	// And do the assignment
+	h.assignEncodingAndSize(bitCount, list)
+}
+
+// atLeastOne clamps the result between 1 and 15.
+func atLeastOne(v float32) float32 {
+	if v < 1 {
+		return 1
+	}
+	if v > 15 {
+		return 15
+	}
+	return v
+}
+
+func histogram(b []byte, h []uint16) {
+	if true && len(b) >= 8<<10 {
+		// Split for bigger inputs
+		histogramSplit(b, h)
+	} else {
+		h = h[:256]
+		for _, t := range b {
+			h[t]++
+		}
+	}
+}
+
+func histogramSplit(b []byte, h []uint16) {
+	// Tested, and slightly faster than 2-way.
+	// Writing to separate arrays and combining is also slightly slower.
+	h = h[:256]
+	for len(b)&3 != 0 {
+		h[b[0]]++
+		b = b[1:]
+	}
+	n := len(b) / 4
+	x, y, z, w := b[:n], b[n:], b[n+n:], b[n+n+n:]
+	y, z, w = y[:len(x)], z[:len(x)], w[:len(x)]
+	for i, t := range x {
+		v0 := &h[t]
+		v1 := &h[y[i]]
+		v3 := &h[w[i]]
+		v2 := &h[z[i]]
+		*v0++
+		*v1++
+		*v2++
+		*v3++
+	}
+}