[VOL-3711] Watching for pods and fetch information as soon as they are available

Change-Id: I266b36a652c80561048c4efcbf7b0f1f561b9641
diff --git a/vendor/github.com/google/go-cmp/cmp/path.go b/vendor/github.com/google/go-cmp/cmp/path.go
new file mode 100644
index 0000000..509d6b8
--- /dev/null
+++ b/vendor/github.com/google/go-cmp/cmp/path.go
@@ -0,0 +1,377 @@
+// Copyright 2017, The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE.md file.
+
+package cmp
+
+import (
+	"fmt"
+	"reflect"
+	"strings"
+	"unicode"
+	"unicode/utf8"
+
+	"github.com/google/go-cmp/cmp/internal/value"
+)
+
+// Path is a list of PathSteps describing the sequence of operations to get
+// from some root type to the current position in the value tree.
+// The first Path element is always an operation-less PathStep that exists
+// simply to identify the initial type.
+//
+// When traversing structs with embedded structs, the embedded struct will
+// always be accessed as a field before traversing the fields of the
+// embedded struct themselves. That is, an exported field from the
+// embedded struct will never be accessed directly from the parent struct.
+type Path []PathStep
+
+// PathStep is a union-type for specific operations to traverse
+// a value's tree structure. Users of this package never need to implement
+// these types as values of this type will be returned by this package.
+//
+// Implementations of this interface are
+// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
+type PathStep interface {
+	String() string
+
+	// Type is the resulting type after performing the path step.
+	Type() reflect.Type
+
+	// Values is the resulting values after performing the path step.
+	// The type of each valid value is guaranteed to be identical to Type.
+	//
+	// In some cases, one or both may be invalid or have restrictions:
+	//	• For StructField, both are not interface-able if the current field
+	//	is unexported and the struct type is not explicitly permitted by
+	//	an Exporter to traverse unexported fields.
+	//	• For SliceIndex, one may be invalid if an element is missing from
+	//	either the x or y slice.
+	//	• For MapIndex, one may be invalid if an entry is missing from
+	//	either the x or y map.
+	//
+	// The provided values must not be mutated.
+	Values() (vx, vy reflect.Value)
+}
+
+var (
+	_ PathStep = StructField{}
+	_ PathStep = SliceIndex{}
+	_ PathStep = MapIndex{}
+	_ PathStep = Indirect{}
+	_ PathStep = TypeAssertion{}
+	_ PathStep = Transform{}
+)
+
+func (pa *Path) push(s PathStep) {
+	*pa = append(*pa, s)
+}
+
+func (pa *Path) pop() {
+	*pa = (*pa)[:len(*pa)-1]
+}
+
+// Last returns the last PathStep in the Path.
+// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
+func (pa Path) Last() PathStep {
+	return pa.Index(-1)
+}
+
+// Index returns the ith step in the Path and supports negative indexing.
+// A negative index starts counting from the tail of the Path such that -1
+// refers to the last step, -2 refers to the second-to-last step, and so on.
+// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
+func (pa Path) Index(i int) PathStep {
+	if i < 0 {
+		i = len(pa) + i
+	}
+	if i < 0 || i >= len(pa) {
+		return pathStep{}
+	}
+	return pa[i]
+}
+
+// String returns the simplified path to a node.
+// The simplified path only contains struct field accesses.
+//
+// For example:
+//	MyMap.MySlices.MyField
+func (pa Path) String() string {
+	var ss []string
+	for _, s := range pa {
+		if _, ok := s.(StructField); ok {
+			ss = append(ss, s.String())
+		}
+	}
+	return strings.TrimPrefix(strings.Join(ss, ""), ".")
+}
+
+// GoString returns the path to a specific node using Go syntax.
+//
+// For example:
+//	(*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
+func (pa Path) GoString() string {
+	var ssPre, ssPost []string
+	var numIndirect int
+	for i, s := range pa {
+		var nextStep PathStep
+		if i+1 < len(pa) {
+			nextStep = pa[i+1]
+		}
+		switch s := s.(type) {
+		case Indirect:
+			numIndirect++
+			pPre, pPost := "(", ")"
+			switch nextStep.(type) {
+			case Indirect:
+				continue // Next step is indirection, so let them batch up
+			case StructField:
+				numIndirect-- // Automatic indirection on struct fields
+			case nil:
+				pPre, pPost = "", "" // Last step; no need for parenthesis
+			}
+			if numIndirect > 0 {
+				ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
+				ssPost = append(ssPost, pPost)
+			}
+			numIndirect = 0
+			continue
+		case Transform:
+			ssPre = append(ssPre, s.trans.name+"(")
+			ssPost = append(ssPost, ")")
+			continue
+		}
+		ssPost = append(ssPost, s.String())
+	}
+	for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
+		ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
+	}
+	return strings.Join(ssPre, "") + strings.Join(ssPost, "")
+}
+
+type pathStep struct {
+	typ    reflect.Type
+	vx, vy reflect.Value
+}
+
+func (ps pathStep) Type() reflect.Type             { return ps.typ }
+func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
+func (ps pathStep) String() string {
+	if ps.typ == nil {
+		return "<nil>"
+	}
+	s := ps.typ.String()
+	if s == "" || strings.ContainsAny(s, "{}\n") {
+		return "root" // Type too simple or complex to print
+	}
+	return fmt.Sprintf("{%s}", s)
+}
+
+// StructField represents a struct field access on a field called Name.
+type StructField struct{ *structField }
+type structField struct {
+	pathStep
+	name string
+	idx  int
+
+	// These fields are used for forcibly accessing an unexported field.
+	// pvx, pvy, and field are only valid if unexported is true.
+	unexported bool
+	mayForce   bool                // Forcibly allow visibility
+	pvx, pvy   reflect.Value       // Parent values
+	field      reflect.StructField // Field information
+}
+
+func (sf StructField) Type() reflect.Type { return sf.typ }
+func (sf StructField) Values() (vx, vy reflect.Value) {
+	if !sf.unexported {
+		return sf.vx, sf.vy // CanInterface reports true
+	}
+
+	// Forcibly obtain read-write access to an unexported struct field.
+	if sf.mayForce {
+		vx = retrieveUnexportedField(sf.pvx, sf.field)
+		vy = retrieveUnexportedField(sf.pvy, sf.field)
+		return vx, vy // CanInterface reports true
+	}
+	return sf.vx, sf.vy // CanInterface reports false
+}
+func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
+
+// Name is the field name.
+func (sf StructField) Name() string { return sf.name }
+
+// Index is the index of the field in the parent struct type.
+// See reflect.Type.Field.
+func (sf StructField) Index() int { return sf.idx }
+
+// SliceIndex is an index operation on a slice or array at some index Key.
+type SliceIndex struct{ *sliceIndex }
+type sliceIndex struct {
+	pathStep
+	xkey, ykey int
+	isSlice    bool // False for reflect.Array
+}
+
+func (si SliceIndex) Type() reflect.Type             { return si.typ }
+func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
+func (si SliceIndex) String() string {
+	switch {
+	case si.xkey == si.ykey:
+		return fmt.Sprintf("[%d]", si.xkey)
+	case si.ykey == -1:
+		// [5->?] means "I don't know where X[5] went"
+		return fmt.Sprintf("[%d->?]", si.xkey)
+	case si.xkey == -1:
+		// [?->3] means "I don't know where Y[3] came from"
+		return fmt.Sprintf("[?->%d]", si.ykey)
+	default:
+		// [5->3] means "X[5] moved to Y[3]"
+		return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
+	}
+}
+
+// Key is the index key; it may return -1 if in a split state
+func (si SliceIndex) Key() int {
+	if si.xkey != si.ykey {
+		return -1
+	}
+	return si.xkey
+}
+
+// SplitKeys are the indexes for indexing into slices in the
+// x and y values, respectively. These indexes may differ due to the
+// insertion or removal of an element in one of the slices, causing
+// all of the indexes to be shifted. If an index is -1, then that
+// indicates that the element does not exist in the associated slice.
+//
+// Key is guaranteed to return -1 if and only if the indexes returned
+// by SplitKeys are not the same. SplitKeys will never return -1 for
+// both indexes.
+func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
+
+// MapIndex is an index operation on a map at some index Key.
+type MapIndex struct{ *mapIndex }
+type mapIndex struct {
+	pathStep
+	key reflect.Value
+}
+
+func (mi MapIndex) Type() reflect.Type             { return mi.typ }
+func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
+func (mi MapIndex) String() string                 { return fmt.Sprintf("[%#v]", mi.key) }
+
+// Key is the value of the map key.
+func (mi MapIndex) Key() reflect.Value { return mi.key }
+
+// Indirect represents pointer indirection on the parent type.
+type Indirect struct{ *indirect }
+type indirect struct {
+	pathStep
+}
+
+func (in Indirect) Type() reflect.Type             { return in.typ }
+func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
+func (in Indirect) String() string                 { return "*" }
+
+// TypeAssertion represents a type assertion on an interface.
+type TypeAssertion struct{ *typeAssertion }
+type typeAssertion struct {
+	pathStep
+}
+
+func (ta TypeAssertion) Type() reflect.Type             { return ta.typ }
+func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
+func (ta TypeAssertion) String() string                 { return fmt.Sprintf(".(%v)", ta.typ) }
+
+// Transform is a transformation from the parent type to the current type.
+type Transform struct{ *transform }
+type transform struct {
+	pathStep
+	trans *transformer
+}
+
+func (tf Transform) Type() reflect.Type             { return tf.typ }
+func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
+func (tf Transform) String() string                 { return fmt.Sprintf("%s()", tf.trans.name) }
+
+// Name is the name of the Transformer.
+func (tf Transform) Name() string { return tf.trans.name }
+
+// Func is the function pointer to the transformer function.
+func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
+
+// Option returns the originally constructed Transformer option.
+// The == operator can be used to detect the exact option used.
+func (tf Transform) Option() Option { return tf.trans }
+
+// pointerPath represents a dual-stack of pointers encountered when
+// recursively traversing the x and y values. This data structure supports
+// detection of cycles and determining whether the cycles are equal.
+// In Go, cycles can occur via pointers, slices, and maps.
+//
+// The pointerPath uses a map to represent a stack; where descension into a
+// pointer pushes the address onto the stack, and ascension from a pointer
+// pops the address from the stack. Thus, when traversing into a pointer from
+// reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
+// by checking whether the pointer has already been visited. The cycle detection
+// uses a seperate stack for the x and y values.
+//
+// If a cycle is detected we need to determine whether the two pointers
+// should be considered equal. The definition of equality chosen by Equal
+// requires two graphs to have the same structure. To determine this, both the
+// x and y values must have a cycle where the previous pointers were also
+// encountered together as a pair.
+//
+// Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
+// MapIndex with pointer information for the x and y values.
+// Suppose px and py are two pointers to compare, we then search the
+// Path for whether px was ever encountered in the Path history of x, and
+// similarly so with py. If either side has a cycle, the comparison is only
+// equal if both px and py have a cycle resulting from the same PathStep.
+//
+// Using a map as a stack is more performant as we can perform cycle detection
+// in O(1) instead of O(N) where N is len(Path).
+type pointerPath struct {
+	// mx is keyed by x pointers, where the value is the associated y pointer.
+	mx map[value.Pointer]value.Pointer
+	// my is keyed by y pointers, where the value is the associated x pointer.
+	my map[value.Pointer]value.Pointer
+}
+
+func (p *pointerPath) Init() {
+	p.mx = make(map[value.Pointer]value.Pointer)
+	p.my = make(map[value.Pointer]value.Pointer)
+}
+
+// Push indicates intent to descend into pointers vx and vy where
+// visited reports whether either has been seen before. If visited before,
+// equal reports whether both pointers were encountered together.
+// Pop must be called if and only if the pointers were never visited.
+//
+// The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
+// and be non-nil.
+func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
+	px := value.PointerOf(vx)
+	py := value.PointerOf(vy)
+	_, ok1 := p.mx[px]
+	_, ok2 := p.my[py]
+	if ok1 || ok2 {
+		equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
+		return equal, true
+	}
+	p.mx[px] = py
+	p.my[py] = px
+	return false, false
+}
+
+// Pop ascends from pointers vx and vy.
+func (p pointerPath) Pop(vx, vy reflect.Value) {
+	delete(p.mx, value.PointerOf(vx))
+	delete(p.my, value.PointerOf(vy))
+}
+
+// isExported reports whether the identifier is exported.
+func isExported(id string) bool {
+	r, _ := utf8.DecodeRuneInString(id)
+	return unicode.IsUpper(r)
+}